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Abstract: Functionalization of polysaccharide-based packaging incorporating inorganic nanoparticles
for food preservation is an active research area. This review summarizes the use of polysaccharide-
based materials functionalized with inorganic nanoparticles (TiO2, ZnO, Ag, SiO2, Al2O3, Fe2O3, Zr,
MgO, halloysite, and montmorillonite) to develop hybrid packaging for fruit, vegetables, meat (lamb,
minced, pork, and poultry), mushrooms, cheese, eggs, and Ginkgo biloba seeds preservation. Their
effects on quality parameters and shelf life are also discussed. In general, treated fruit, vegetables,
mushrooms, and G. biloba seeds markedly increased their shelf life without significant changes in their
sensory attributes, associated with a slowdown effect in the ripening process (respiration rate) due
to the excellent gas exchange and barrier properties that effectively prevented dehydration, weight
loss, enzymatic browning, microbial infections by spoilage and foodborne pathogenic bacteria, and
mildew apparition in comparison with uncoated or polysaccharide-coated samples. Similarly, hybrid
packaging showed protective effects to preserve meat products, cheese, and eggs by preventing
microbial infections and lipid peroxidation, extending the food product’s shelf life without changes
in their sensory attributes. According to the evidence, polysaccharide-hybrid packaging can preserve
the quality parameters of different food products. However, further studies are needed to guarantee
the safe implementation of these organic–inorganic packaging materials in the food industry.

Keywords: polysaccharide; inorganic nanoparticles; functionalization; hybrid materials; active
packaging; food preservation

1. Introduction

Currently, the development of eco-friendly and functional biopolymer-based materials
for food packaging is a fast-growing area as an alternative to reduce the use of non-
biodegradable and synthetic polymers, particularly polysaccharide-based materials [1],
which could be functionalized with organic or inorganic compounds to fabricate hybrid
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composites with advanced properties [2,3]. Hybrid composites comprise a combination of
inorganic-inorganic (e.g., metal-non-metal), organic-organic (e.g., polysaccharide-protein),
and organic–inorganic (e.g., polysaccharide-metal oxide) compounds made by covalent
and non-covalent methods [1], being hybrid composites made up of organic polymers
and inorganic nanoparticles, a class of biomaterials with a reinforced matrix for diverse
applications [4].

The use of inorganic nanoparticles has exploded during recent years [1], applying them
in various fields, such as textile, cosmetic, optics, agriculture, medicine, pharmaceutics,
and food packaging [5]. The wide use of inorganic nanoparticles is supported by their
physical, chemical, antimicrobial, optical, magnetic, electrical, and mechanical properties,
thermal stability, reactivity, low-cost production, safe use, and compatibility with organic
compounds such as polysaccharides [2,6,7]. Currently, inorganic nanoparticles such as zinc
oxide (ZnO), silver (Ag), titanium dioxide (TiO2), silicon dioxide (SiO2), and iron (III) oxide
(Fe3O4) have been used as cross-link agents to enhance the mechanical, physicochemical,
water-related, and antimicrobial properties of polysaccharide-based materials for food
active packaging development [8–12].

During the last decade, polysaccharide-based materials functionalized with inorganic
nanoparticles have been used as packaging to preserve food products such as cheese, meat,
shrimps, fruit, and vegetables. El-Sayed et al. [13] manufactured a chitosan/guar gum/ZnO
coating for Ras cheese preservation, reporting no changes in its sensorial properties, and it
was microbiologically stable for up to three months. In another work, starch-halloysite-
nisin hybrid films have effectively inhibited Listeria monocytogenes growth in soft cheese [14].
Osman et al. [15] found that chicken fillets coated with a hydroxypropyl-methylcellulose
packaging combined with SiO2 and aluminum oxide (Al2O3) nanoparticles showed good
quality attributes and microbial safety after 15 days stored at 4 ◦C. Meanwhile, Kaewklin
et al. [11] informed that chitosan-TiO2 films effectively extend the shelf life of tomatoes
under cold storage without significant changes in quality parameters. Similarly, a sodium
alginate film combined with silver nanoparticles is suitable for carrot and pears preserva-
tion with minimal changes in their sensory and quality parameters [16].

This review summarizes the advantages and limitations of polysaccharide-based
materials functionalized with inorganic nanoparticles for food packaging material and
their effect on quality parameters and shelf life of different food products.

2. Polysaccharides as Food Packaging Materials

Food packaging against spoilage is based on reducing the growth of undesirable
and spoilage-related microorganisms, preventing, or slowing down other processes that
may induce undesirable modifications in the food matrix [17]. Biopolymers traditionally
used to formulate biodegradable packaging materials are obtained from proteins, lipids,
polysaccharides extracted from renewable agriculture by-products, waste of food process-
ing industry, and other natural resources (animals, plants, microorganisms, and algae) [1].
Presently, the development of new packaging materials that maintain the quality, safety,
and sensorial properties of several food products, extending their shelf life, facilitating
their handling and storage, with an excellent cost-benefit relation is an active research area.

In this context, polysaccharides are considered a viable alternative to fabricate food
packaging materials because they are abundant, non-toxic, biodegradable, low-cost, and
biocompatible [1], exhibiting an excellent film-forming ability and potential to be used in
the food industry as packaging. On the other hand, the qualities of polysaccharide-based
materials are still the reason to continue using them for food packaging purposes, where
diverse polysaccharide sources (plant, animal, algae, and yeast) have been explored. More-
over, most of the used polysaccharides in the formulations of food packaging materials
include chitosan, cellulose and its derivates, starch, gums, alginate, and pectin [18]. Re-
markably, polysaccharides-based packaging has exhibited good performance as a barrier
for food protection. However, some limitations related to water vapor resistance and
mechanical strength have been reported for these kinds of materials [19–21].
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The current trend in developing polysaccharide-based packaging was estimated using
a stratified search to understand the tendency to use biopolymers as packaging material and
their importance in the food industry [22]. Figure 1 describes the use of polysaccharides for
biodegradable packaging materials development with or without incorporating additives
(plasticized agents) or functional agents (organic or inorganic compounds) for diverse
applications, particularly for food preservation.
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3. Functionalization of Polysaccharide-Based Materials for Food Packaging

Most of the potential applications of polysaccharide-based materials for food packag-
ing purposes are restricted by their poor gas permeability, low water-barrier ability, low
thermal stability, high solubility, and mechanical resistance, which are limiting factors in
the food preservation process [1,23]. Therefore, to reduce these limitations, polysaccharide-
based materials have been combined with organic and inorganic compounds to improve
their technological and functional properties [24]. The functionalization or hybridization
of polysaccharide-based materials adding organic and inorganic nanoparticles is a techno-
logical strategy to fabricate hybrid composites with new functionalities for food packaging
development [25,26]. Applications of some polysaccharide-based materials functionalized
with organic and inorganic compounds and microorganisms for food preservation are
listed in Table 1.

According to the literature, the functionalization of polysaccharide-based materials
by adding organic and inorganic compounds and microorganisms (alone or combined)
enhanced the thermal and water resistance, gas permeability, tensile strength, elongation
at break, and elastic modulus properties and in some cases provide antimicrobial activity,
which are suitable characteristic for food packaging, associated with their chemical and
physical interactions with the functional group (e.g., NH2 in chitosan, and OH in starch
and cellulose) present at second carbon (C2) of polysaccharide structure [1].
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Table 1. Application of some functionalized polysaccharide-based materials for food preservation.

Polysaccharide Functional Agent Presentation Food Product Ref.

Starch Ascorbic acid Edible film Guava fruit [27]

Carboxymethyl cellulose Guar gum Edible film Strawberry fruit [28]

Cellulose Allyl isothiocyanate Edible film Chicken breast
meat [29]

Chitosan Cryptococcus laurentii Edible film Grapefruit fruit [30]

Guar gum Thyme oil Edible film Tilapia fillets [31]

Sodium alginate Rosmarinus officinalis
essential oil Edible film Soft cheese [32]

K-Carrageenan Olive leaf extract Edible film Lamb meat [33]

Pectin Oregano essential oil Edible film Pork loin [34]

4. Food Preservation Using Polysaccharide Packaging Functionalized with
Inorganic Nanoparticles

One of the essential tools for food preservation is the use of packaging materi-
als [35]. At present, most food packaging materials are based on non-biodegradable
and hard-to-recycle petrochemical polymers [36]. In this context, the potential use of food
polysaccharide-based packaging has been widely explored during recent years. Figure 2
shows the distribution of searching terms on recently published papers (2016–2021) us-
ing functionalized polysaccharide-based materials with inorganic nanoparticles, where
the most common keywords were polysaccharides, nanoparticles, nanocomposites, and
chitosan. It is also noted that the terms’ distribution is focused on four clusters, where
the first one (green color) comprised the intrinsic characteristics of polysaccharides and
inorganic nanoparticles, while their combination is in the second cluster (yellow color). The
third cluster (blue color) explained the development of nanocomposites as packaging mate-
rial, while the fourth (red color) is distinguished for the application of organic–inorganic
composites for food preservation.

According to the literature [1,3,17,37,38], dipping food products in a film-forming
aqueous solution is the most common method to apply organic–inorganic hybrid films
(Figure 3a), followed by developing hybrid materials by the evaporative casting method
and then applying them as a coating (Figure 3b).

Figure 4 is a proposal diagram to develop polysaccharide-based materials function-
alized with inorganic nanoparticles based on the information discussed throughout this
work. This kind of hybrid materials are recognized as a promising alternative to fabricate
food packaging because they are non-toxic, eco-friendly, low-cost, available, biodegradable,
and simple to prepare [1,3,11,12,37,38]. Additionally, the most reported inorganic nanopar-
ticles used as nanofillers for the functionalization of polysaccharide-based packaging used
for food preservation are zinc oxide, titanium dioxide, silver, silicon dioxide, iron oxide,
zirconium, halloysite, montmorillonite, and magnesium oxide, as discussed below.
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4.1. Zinc Oxide (ZnO)

Zinc oxide is a multifunctional material with electrical, photocatalytic, ultraviolet-
blocking, and antimicrobial properties; it is thermally and chemically stable and exhibit a
high surface area and strong adsorption ability for diverse applications such as cosmetics,
pharmaceutical, water treatment, and food packaging [40,41]. ZnO is an available and
low-cost material with excellent compatibility and easy incorporation into polysaccharide-
based matrix [42]. Furthermore, ZnO nanoparticles have improved the physicochemical,
mechanical, antimicrobial, and water-related properties of some polysaccharide-based
materials with potential for food packaging development due to its ability to interact with
the hydroxyl (-OH) groups in the polysaccharide chains [39]. Table 2 summarizes the
application of polysaccharide-ZnO packaging and their effects on quality parameters of
various food products.

In general, polysaccharide compounds such as chitosan, carboxymethylcellulose,
starch, sodium alginate, carrageenan, and pectin have been functionalized with zinc
oxide nanoparticles for fruit, vegetable, and mushroom preservation (Table 2). Lavinia
et al. [43] developed a hybrid film composed of chitosan and zinc oxide nanoparticles
with antimicrobial properties for fresh-cut papaya preservation. They reported that after
storage (12 days at 10 ◦C), the hybrid film significantly suppressed the microbial growth
(total viable count 4.11 log colony-forming unit per gram (CFU/g)) than the uncoated
sample (total viable count 7.36 log CFU/g), associated with a synergistic effect between
individual components and their interactions with the cell wall, leading to cell death.
Arroyo et al. [44] informed that a chitosan–sodium alginate–zinc oxide film effectively
protected guava fruit against weight loss and retarded physicochemical changes (color,
pH, total soluble solids, and titratable acidity) related to the ripening process without
apparent mildew lesions after 20 days of storage at 21 ◦C. The authors highlighted the
reduction of the fruit maturation rate when the hybrid film was applied, mentioning that
it is a viable alternative for guava fruit preservation. Moreover, it has been reported that
chitosan–zinc oxide coatings effectively extended the shelf life of okra up to 12 days at 25
◦C without significant changes in its quality parameters (pH, total soluble solids, weight
loss, and moisture content), which was associated with a reduction in microbial infections.
According to the authors, the barrier properties of chitosan film and the antimicrobial
properties of zinc oxide have a great impact in okra preservation.
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Table 2. Effects of polysaccharide-zinc oxide (ZnO) composites application on food quality.

Polysaccharide ZnO
Specifications Other Additives

Coating
Method/

Presentation
Food Product Storage

Conditions Observed Results Ref.

Chitosan
(3 g in 300 mL)

Conc.: 0.027%
w/w

Commercial
Size: 600 nm

Acetic acid
(1 mL/100 mL)

Dipping for
10–20 s and
drained at
25 ◦C/film

Fresh-cut
papaya

10 ◦C for
12 days

Treated fruit
showed a reduced
microbial growth.

[43]

Chitosan
(5% w/v)

Conc.: 1%
Commercial

Sodium alginate
(10% w/w in

chitosan weight)
Glycerol (2% v/v)

Dipping/film Guava
21 ◦C for
20 days at
80% RH

The composite
delayed the

ripening process
without

apparent lesions.

[44]

Chitosan
(2%)

Commercial
Size: 35–45 nm NI

Evaporative
cast-

ing/coating
Okra 25 ◦C for

12 days

The treated product
showed reduced the

fungal and
bacterial growth.

[45]

Chitosan
(1.4 w/v, DD

80–95%)

Commercial
Size: 30 nm

Linseed oil 1:2 ratio
on a potato protein

solution (1.2%)
glycerol (1.5%)

Evaporative
cast-

ing/coating
Raw meat 4 ◦C for 7 days

Threated meat
preserved its

sensory properties.
[46]

Chitosan
(0.4 g in 100 mL)

Conc.: 0.2%
w/v

The betanin-loaded
NLPs (10%)

gelatin
(4 g/100 mL)

glycerol
(1 g/100 mL)

Evaporative
cast-

ing/coating
Fresh beef 4 ◦C for

16 days

Treated meat
exhibited a reduced

physicochemical
changes during

storage.

[47]

Chitosan
(10% w/v)

Commercial
Size: 30 nm

Gelatin (4% w/v),
glycerol (25%)

Evaporative
cast-

ing/coating
Chicken fillet

4 ◦C for
12 days at 80%

RH

The hybrid film did
not promote

changes in the
quality parameters.

[48]

Chitosan
(10% w/v)

Commercial
Size: 30 nm

Gelatin (4% w/v),
glycerol (25%)

Evaporative
cast-

ing/coating

White
cheese

4 ◦C for 12
days at
80% RH

The hybrid coating
protected the
physical and

chemical quality,
reduced the weight
loss and inhibited
bacterial growth.

[48]

Chitosan
(3% w/v) Conc. 3%

Roselle calyx
extracts (2.8 g)

guar gum
(3% w/v)

Evaporative
cast-

ing/coating
Ras cheese

12 ◦C for three
months at
80% RH

Nanocomposite
films enhanced the
shelf life of cheese
without changes in

its sensorial
properties.

[13]

Chitosan
(2% w/v)

Conc.: 2–8%
Commercial CMC (1% w/v)

Evaporative
cast-

ing/coating

White
cheese from
buffalo milk

7 ◦C for
30 days

Cheese was
microbiological
stable during

storage.

[49]

CMC (1% w/v) Commercial Cinnamaldehyde
(100 mg/100 mL)

Evaporative
cast-

ing/coating
Cherry tomato

25 ◦C for 10
days at
45% RH

Nanocomposite film
reduced changes in

weight and
firmness.

[50]

CMC (0.5% w/v)

Conc.: 0.2%
(w/v)

Commercial
Size:

30–100 nm

NR
Evaporative

cast-
ing/coating

Pomegranate
4 ◦C for
12 days

at 90% RH

The composite
delayed the fruit
ripening process.

[51]

Buckwheat
starch

(30 g/L)

Conc.: 3%
Commercial
Size: <50 nm

Sorbitol (15 g/L)
Evaporative

cast-
ing/coating

Mushrooms 4 ◦C for 6 days
Treated mushrooms
exhibited reduced

dehydration.
[52]
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Table 2. Cont.

Polysaccharide ZnO
Specifications Other Additives

Coating
Method/

Presentation
Food Product Storage

Conditions Observed Results Ref.

Sodium alginate
(1.5% w/v)

Conc.: 1.25 g/L
Commercial

Size: 30–50 nm
Glycerol (1%) Dipping/film Strawberries

1 ◦C for
20 days at
95% RH

The hybrid films
reduced microbial

infections and
activated the

antioxidant system
of the fruit.

[53]

Sodium alginate
(1.67 g in 50 mL)

Conc.: 1
mg/mL
Size: 5 to

10 nm

Calcium chloride
(5% w/w)

Glycerol (1.5 mL)

Evaporative
cast-

ing/coating

Smoked
salmon 4 ◦C for 4 days

Treated salmon was
microbiologically

stable during
storage.

[42]

Calcium alginate
(0.7 g in 30 mL)

Conc.:
3 mg/mL

Size: 50 nm
NI

Evaporative
cast-

ing/coating

Poultry
meat

4 ◦C for
10 days

Hybrid coating
provide microbial

control during
storage.

[54]

Carrageenan
(8 × 10−4 kg)

Conc.: 1% w/v
Commercial

Size:
20 × 10−9 m

Glycerol
(5 × 10−4 L)

Evaporative
casting/film Mango 20 ◦C at

60% RH

Treated fruit
retained firmness
and retarded the
ripening process.

[55]

Pectin
(10 g)

Concentration
(100 mg/L)

Size: 43.1 nm

Glycerol
(1 mL) Dipping/film Starfruit 8 days

Treated fruit
showed minimal
moldy infections

and preserved
quality attributes
during storage.

[56]

Agar Conc.: 1% Glycerol (1% v/v)
Evaporative

cast-
ing/Coating

Smoked
salmon 4 ◦C for 8 days

Hybrid coating
provide microbial

control and reduced
lipid oxidation
during storage.

[57]

NI: No information; DD: deacetylated degree; Conc: nanoparticles concentration; RH: relative humidity; CMC: carboxymethylcellulose;
NLPs: nanoliposomes.

Guo et al. [50] evaluated the effect of carboxymethylcellulose–zinc oxide–cinnamaldehyde
films in the postharvest quality of cherry tomatoes. They found that after 10 days of storage
at 25 ◦C, the coated tomato preserved its firmness (2.54 N) and reduced its weight loss
(6.09%) compared to uncoated (1.66 N and 11.10%, respectively) or carboxymethylcellulose-
coated (1.96 N and 8.64%, respectively) cherry tomatoes, suggesting that the hybrid film pre-
vented dehydration of tomato fruit, suppressing some physiological activities. Koushesh-
Saba and Amini [51] reported that carboxymethylcellulose functionalized with zinc oxide
nanoparticles effectively extended the shelf life of ready-to-eat pomegranates up to 12 days
under cold storage (4 ◦C). In general, the coated pomegranate was microbiologically stable
(yeast and molds of 1.2 log CFU/g and total viable count of 2 log CFU/g) without signifi-
cant weight loss (0.6%) and changes in physicochemical parameters (pH, titratable acidity,
and total soluble solids) than the control sample (yeast and molds of 2.5 log CFU/g and
total viable count of 2.7 log CFU/g with a weight loss of 2%). According to the authors,
zinc oxide enhanced the barrier properties of the carboxymethylcellulose coating, reducing
the moisture diffusion of the fruit to the surrounding atmosphere, and slowed down some
physiological processes in the pomegranates, also, zinc oxide decreased the microbial load,
extending the ready-to-eat fruit shelf life.

Emamifar and Bavaisi [53] fabricated a sodium alginate film functionalized with zinc
oxide nanoparticles to extend the shelf life of strawberries. They reported that coated
fruit exhibited a reduced population level of yeast and molds (4.11 log CFU/g) and total
aerobic bacteria counts (2.98 log CFU/g) than the uncoated sample (>7 log CFU/g in
all evaluated microorganisms) after 20 days of storage at 1 ◦C. Moreover, treated fruit
preserved their quality parameters (minimal weight loss, firmness, total soluble solids,
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titratable acidity, ascorbic acid, anthocyanins, and phenol content) and sensory attributes.
These results were associated with a reduction in peroxidase activity (1.25 U/mg protein)
followed by an increase in the activity of superoxide dismutase (1.5 U/mg protein) in
comparison with uncoated fruit that showed a higher peroxidase activity, and lower SOD
activity (2.75 and 0.5 U/mg protein, respectively), delaying the senescence of strawberries.
According to the authors, the hybrid film exhibited significant effects on the postharvest life
of strawberries due to the prevented microbial infections and fruit deterioration associated
with the activation of the antioxidant system of the fruit.

Meindrawan et al. [55] evaluated the effect of a carrageenan–zinc oxide hybrid film
on the postharvest quality of mangoes. They found that the hybrid-coated fruit exhibited
lower weight losses (15%) and acidity content (94.11%) with a decrease in the carbon
dioxide production peak (3.19 mg/kg s) than carrageenan-coated mangoes (20%, 69.91%,
and 4.03 mg/kg s, respectively) after 12 days of storage at 20 ◦C, delaying the ripening
process and preserving a good appearance without mildew infection. These results were
attributed to the gas barrier properties of the hybrid film that extends the shelf life of
mangoes.

Romadhan and Pujilestari [56] reported that the application of pectin–zinc oxide
hybrid film effectively decreased weight loss of starfruit without significant changes in
color attributes, preventing mildew apparition during 8 days of storage at 30 ◦C, associated
with a good exchangeability of the film, preventing fruit dehydration.

Kim and Song [52] developed an active packaging with antimicrobial properties
composed of buckwheat starch and zinc oxide nanoparticles for fresh-cut mushrooms
preservation. They reported that hybrid films containing 3% of zinc oxide reduced the
growth of L. monocytogenes (0.86 log CFU/g) after six days of storage at 4 ◦C. Moreover,
the treated mushrooms exhibited lower browning index values (9) and weight loss (0.3%)
than uncoated samples (16% and 1.8%, respectively) during storage. These results were
attributed to the adequate gas exchangeability and ultraviolet-blocking properties of the
hybrid film; reducing the oxygen content between the sample and film, consequently
diminishing the oxidative stress that delayed the ripening process and prevented microbial
infections, enzymatic and non-enzymatic browning, and dehydration.

Additionally, chitosan, sodium alginate, calcium alginate, and agar-based coatings
combined with zinc oxide have been applied to extend the shelf life of fresh beef, chicken
fillets, and smoked salmon (Table 2). Wang et al. [46] evaluated the effect of chitosan-potato
protein-linseed oil–zinc oxide coating on raw meat quality parameters. They reported
that treated meat preserved its sensory attributes after seven days under cold storage
(4 ◦C). Those results were associated with the ability of the hybrid film to inhibit the
microbial growth (total viable count of 4 log CFU/g) and maintain the pH values (5.8)
in the meat product than the uncoated sample (total viable count >7 log CFU/g and pH
of 7.5), retarding the raw meat deterioration. Similarly, Amjadi et al. [47] informed that
fresh beef coated with a gelatin-chitosan–zinc oxide-betanin liposome hybrid composite
was microbiological (S. aureus 2.63 log CFU/g and E. coli 3.83 log CFU/g) stable and
reduced changes from lipidic oxidation (0.71 mg malondialdehyde/kg (MDA)), pH (6.27),
and color attributes during 16 days at 4 ◦C than uncoated beef (S. aureus 5.26 log CFU/g,
E. coli 6.76 log CFU/g, 1.23 mg of MDA/kg and pH of 7.20, respectively) or chitosan-
coated samples (S. aureus 5.76 log CFU/g, E. coli 6.13 log CFU/g, 1.50 mg of MDA/kg
and pH of 7.51, respectively). These results were attributed to the antimicrobial and
antioxidant properties of the hybrid film that prevented the myoglobin oxidation and
accumulation of metmyoglobin, associated with the zinc oxide and betanin liposomes.
Furthermore, it has been reported that a film composed of gelatin, chitosan, and zinc oxide
nanoparticles effectively extended the shelf life of chicken fillets up to 12 days stored at
4 ◦C without significant changes in pH values, weight loss, or color attributes. Additionally,
the coated samples were microbiological stable during the storage time. According to the
authors, the hybrid film can prevent dehydration of chicken fillets, exhibiting antimicrobial
properties [48].
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Vizzini et al. [42] developed an active packaging composed of sodium alginate and
zinc oxide previously doped with magnesium oxide nanoparticles to protect cold-smoked
salmon against L. monocytogenes. They reported that coated salmon (previously inoculated
with L. monocytogenes at 103 cells per gram) did not show plate counts after 4 days of
storage at 4 ◦C than uncoated samples that exhibited a visible deterioration. Moreover,
coated samples showed a reduced microbial growth from the purchasing day to the end of
storage time in total viable count (from 4.4 to 6.5 log CFU/g), Enterbacteriaceae (<0.7 log
CFU/g), lactic acid bacteria (from 4.4 to 5.95 log CFU/g), and yeasts (from 1.57 to 5.75 log
CFU/g). These results were attributed to the barrier properties of the hybrid film and to
the antimicrobial activity of zinc oxide nanoparticles that effectively prevented microbial
proliferation in cold-smoke salmon.

Akbar and Anal [54] reported that an active calcium alginate–zinc oxide hybrid
coating effectively extended the shelf life of ready-to-eat poultry meat up to 10 days stored
at 8 ◦C. They found that treated meat (previously inoculated with Salmonella typhimurium
and Staphylococcus aureus) exhibited a significant reduction in the viable counts of both
pathogenic bacteria after the storage time. After 6 days, inoculated S. aureus counts
decreased from 107 to 101 log CFU/g, while S. typhimurium decreased from 107 to 103 log
CFU/g after 8 days of storage. These results were associated with the antimicrobial
properties of the zinc oxide nanoparticles, leading to bacterial cell damage, suggesting that
the hybrid packaging could be used for poultry meat preservation.

Baek and Song [57] developed an agar coating functionalized with zinc oxide nanopar-
ticles for smoked salmon preservation. They found that treated salmon (previously inoc-
ulated with 5.86 log CFU/g of L. monocytogenes and S. typhimurium) showed a reduced
microbial growth after 5 days of storage at 4 ◦C. Moreover, the hybrid film prevented
lipid oxidation (1.2 mg MDA/kg) compared to the uncoated sample (0.16 mg MDA/kg);
moreover, no significant changes in the visual color of salmon were detected. These results
were associated with the UV-blocking ability of the zinc oxide nanoparticles, retarding the
lipid oxidation process.

Similarly, a hybrid coating composed of chitosan and zinc oxide nanoparticles has been
investigated to preserve white, Ras, and buffalo milk cheeses (Table 2). Amjadi et al. [48]
functionalized a gelatin-chitosan coating with zinc oxide nanoparticles for cheese preserva-
tion. They reported that after 12 days of storage at 4 ◦C, coated cheese showed lower weight
loss (36%) than the chitosan-coated (49.60%) samples. Additionally, the hybrid-coated
cheese was microbiologically stable (total bacteria count < 2 log CFU/g) without significant
changes in its pH values (4.7) and color attributes, which were lower than the control group
(total bacteria count 3.2 log CFU/g and pH of 4.5). These results were associated with
the hybrid film’s ability to prevent cheese dehydration and rancidity. El-Sayed et al. [13]
reported that chitosan–guar gum–zinc oxide–roselle extract hybrid coating effectively ex-
tended the shelf life of Ras cheese up to three months at 12 ◦C, finding that coated cheeses
were microbiologically stable (total bacteria count, mold, and yeast were <5 log CFU/g)
without significant changes in pH values and sensory attributes than the control sample,
which was infested by a green mold. Moreover, the application of the hybrid film did
not promote changes in the Ras cheese nutritional composition. According to the authors,
these results were attributed to the gas exchangeability and antimicrobial properties of
the hybrid film that preserves the quality parameters of Ras cheese. Similar trends were
reported in an Egyptian soft cheese coated with a chitosan–carboxymethylcellulose–zinc
oxide composite, which was microbiologically stable (total viable and coliform counts,
yeast and mold) without significant changes in pH values, titratable acidity, moisture con-
tent, color parameters, and sensory attributes after 30 days of storage at 7 ◦C. The authors
argue that the hybrid film’s adequate physicochemical (contact angle) and antimicrobial
properties are responsible for the cheese shelf life extension.

According to the evidence, functionalization of chitosan, carboxymethylcellulose,
starch, carrageenan, sodium alginate, calcium alginate, pectin, and agar-based packaging
by adding zinc oxide nanoparticles is a viable alternative to fabricate active packaging
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for fruit, vegetables, mushrooms, fresh beef, chicken fillets, smoked salmon, and white,
Ras, and buffalo milk cheeses, maintaining their quality parameters without affecting their
sensory attributes during storage.

4.2. Titanium Dioxide (TiO2)

Titanium dioxide is one of the most studied inorganic nanoparticles due to their
versatility for diverse research areas (materials, physics, gas sensor, energy production,
wastewater treatment, cosmetics, and food science) [6,58,59]. The wide use of titanium
dioxide is supported by its photocatalytic performance, antimicrobial, electrical, ultraviolet-
blocking, and adsorptive properties, biocompatibility, chemical stability, high surface area,
low-cost, and safe production [60,61]. In recent years, titanium dioxide has been explored
as a nanofiller of polysaccharide-based matrices such as chitosan, starch, and cellulose
to develop food packaging with improved technological and functional properties [62].
Table 3 summarizes the application of polysaccharide–titanium dioxide packaging and
their effects on quality parameters of some fruit, mushrooms, seeds, and meat products.
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Table 3. Effect on the application of polysaccharide–titanium dioxide (TiO2) composite on the food quality.

Polysaccharide
TiO2

Specifica-
tions

Other Additives
Coating
Method/

Presentation

Food
Product

Storage
Conditions

Observed
Results Ref.

Chitosan
(1% w/w,
DD 85%)

Conc.: 1%
w/w

Commercial
Size: 15 nm

Thymol (0.5%);
tween-80 (0.25%)

Acetic acid
(1 mL/100 mL)

Dipping for
1 min and
air-dried at
25 ◦C/film

Cantaloupe
fruit

25 ◦C for
8 days

Treated fruit
showed microbial

safety and
maintain quality

parameters
during storage.

[63]

Chitosan
(1% w/w,
DD >95%)

Conc.: 0.3%
w/w

Commercial
Size: 30 nm

Glycerol
(1% w/w)

Acetic acid
(1 mL/100 mL)

Dipping for
3 min and air-

dried/film

Mango
fruit

13 ◦C for
20 days

The hybrid film
preserved the

quality
parameters of

mangoes.

[64]

Chitosan
(1% w/w,
DD >99%)

Commercial

Graphene oxide
(1 mg/mL)
Acetic acid

(0.5 mL/100 mL)
Glutaraldehyde
solution (2 mL)

NI/NI Mangoes 25 ◦C for
14 days

Coated fruit
maintained their
color attributes.

[65]

Chitosan
(1% w/w,
DD >99%)

Commercial

Graphene oxide
(1 mg/mL)
Acetic acid

(0.5 mL/100 mL)
Glutaraldehyde
solution (2 mL)

NI/NI Strawberries 25 ◦C
for 14 days

Coated fruit
maintained their
color attributes.

[65]

Chitosan
(2% w/w,
DD >85%)

Conc.: 1%
w/w

Commercial
Size: 21 nm

Glycerol (30%
w/w of chitosan)

Acetic acid (1
mL/100 mL)

Dipping/film Tomatoes 20 ◦C for
15 days

Treated fruit
showed minimal

changes in quality
parameters and

delayed the
ripening process.

[11]

Chitosan
(1% w/w,
DD 90%)

Conc.:
0.05 g
Size:

50–80 nm

Acetic acid
(2.5% v/v) Dipping/film Red

grapefruit
37 ◦C for
22 days

Hybrid film
prevented
microbial

infection and
extended the shelf

life of fruit.

[62]

Chitosan
(1% w/w,
DD >90%)

Conc.: 0.03%
w/w

Anatase
phase
Size:

<200 nm

Glycerol (6.5%
v/v)

Acetic acid
(1 mL/100 mL)

NI/film Stauntonvine
fruit

25 ◦C
for 45 days

Fruit treated with
hybrid film

showed good
CO2 transmission

without
significant

changes in quality
parameters.

[66]

Chitosan
(1% w/w,
DD 85%)

Conc.: 1%
w/w
Size:

15 nm

Thymol (0.5%);
tween-80 (0.25%)

Acetic acid
(1 mL/100 mL)

NI/film Mushroom 4 ◦C for
12 days

Hybrid films
reduced the PPO

activity and
inhibited the

microbial
pollution growth.

[67]
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Table 3. Cont.

Polysaccharide
TiO2

Specifica-
tions

Other Additives
Coating
Method/

Presentation

Food
Product

Storage
Conditions

Observed
Results Ref.

Chitosan
(1% w/w,
DD >75%)

Conc.: 0.02%
w/v

Size: 18 nm
Commercial

NI
Dipping for 1
min and air-
dried/film

Ginko biloba
seeds

1 ◦C for
180 days

Hybrid films
prevented mildew

apparition.
[68]

Chitosan
(2% w/w)

Conc.: 1%
w/w

Commercial

Tween-80 (0.25%)
Glycerol

(0.75 mL/g
chitosan)

Acetic acid
(1 mL/100 mL)

CCEO (1.5% v/v)

Evaporative
cast-

ing/coating
Minced meat 4 ◦C for

7 days

Meat was
microbially stable

during storage.
[69]

Cellulose
(1% w/v)

Conc.: 1%
w/w

Commercial
Size:

10–25 nm
Phase:

anatase

WPI (10% w/v)
Glycerol (6%

w/v)
REO (2% w/v)

Evaporative
casting at

30 ◦C/coating

Lamb
meat

4 ◦C for
15 days

Meat was
microbially stable

during storage.
[70]

Cellulose
(1% w/v)

Conc.: 1%
w/w

Commercial
Size:

10–25 nm
Phase:

anatase

WPI (10% w/v)
Glycerol (6%

w/v)
REO (2% w/v)

Evaporative
casting at

30 ◦C/coating

Lamb
meat

4 ◦C for
15 days

Hybrid films
reduced lipid
peroxidation.

[71]

Starch 0.01% w/w
Glycerol

Distilled vinegar
(5%)

Evaporative
casting at

35 ◦C/coating
Bananas

Ambient
temp.

for 14 days

Hybrid films
extended the shelf
life compared to
uncoated fruit.

[37]

Starch 0.01% w/w
Glycerol

Distilled vinegar
(5%)

Evaporative
casting

at
35 ◦C/coating

Tomatoes
Ambient

temp.
for 21 days

Hybrid films
extended the shelf
life compared to
uncoated fruit.

[37]

Guar gum NI NI
Dipping for

1 min and air-
dried/film

Dates 0 ◦C for
60 days

Treated fruit
preserved quality

parameters
during storage.

[72]

NI: No information; DD: deacetylated degree; Conc: nanoparticles concentration; CCEO: Cymbopogon citratus essential oil; REO: rosemary
essential oil; WPI: whey protein isolate; PPO: polyphenol oxidase.

Functionalization of chitosan, starch, and guar gum-based packaging by incorporat-
ing TiO2 nanoparticles for fruit preservation has been explored in recent years (Table 3).
Qiao et al. [63] developed a hybrid film with chitosan–titanium dioxide-thymol (CS-TiO2-
thymol) to enlarge the shelf life of ready-to-eat cantaloupe fruit. They reported that
cantaloupe packaged in the CS-TiO2-thymol film showed major yeast and mold counts
(1.6 log CFU/g) and polyphenol oxidase stability (PPO activity decreased from 0.65 to
0.35 U/min g) compared to the chitosan control group (yeast and molds 2.6 log CFU/g,
PPO decreased from 0.65 to 0.15 U/min g) after 8 days of storage at 25 ◦C. Furthermore,
minimal changes in quality parameters (pH, titratable acidity, total soluble solids, color
attributes, water activity, and ascorbic acid) of the treated fruit during storage were ob-
served. These results were attributed to the antimicrobial activity of the hybrid film and to
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the ability to reduce the oxygen between the film and the fruit, influencing the polyphenol
oxidase activity and preserving the quality parameters of the ready-to-eat cantaloupe fruit.

Xing et al. [64] monitored changes on the postharvest quality parameters of mangoes
coated with a chitosan–titanium dioxide hybrid film during 8 days at 13 ◦C, reporting that
coated fruit exhibited retarded decay effects (19.73% after 15 days) than those observed in
control groups (without coating 36% and chitosan-coated 28%); nonetheless, treated fruit
maintained their firmness without significant changes on the total soluble solids content.
Similar results were reported by Xu et al. [65], who coated mangoes and strawberries
treated with a self-assembly film composed of graphene oxide and chitosan embedded with
titanium dioxide nanoparticles, reporting that after 14 days of storage at room temperature,
treated fruit showed 5% less of weight loss. Furthermore, treated fruit exhibited a reduction
in the polyphenol oxidase activity (45%) and enhanced antioxidant enzyme activity via
superoxide dismutase activation (from 25 to 330 U mg protein−1) in comparison with
uncoated and plastic-coated samples; suggesting that chitosan–titanium dioxide hybrid
films may be a potential method for fruit preservation.

Additionally, it has been reported that CS–titanium dioxide film exhibited ethylene
photo-degradation (from C2H4 to CO2 and H2O) under ultraviolet-light irradiation (320 nm
during 3 h), extending the shelf life of tomatoes for 15 days stored at 20 ◦C without
significant changes in their quality parameters (weight loss, firmness, total soluble solids,
color attributes, ascorbic acid, and lycopene content). This behavior was associated with
a delay effect in the ripening process of the fruit in comparison with chitosan-coated
fruit [11]. Likewise, Zhang et al. [62] found that chitosan–titanium dioxide hybrid films
effectively extended the shelf life of red grape fruit (22 days at 37 ◦C) without leakage of
the juice and mildew apparition compared to plastic-coated fruit that exhibited several
moldy spots and sticky juice leaked to the surface after 15 days of storage, associated with
the antimicrobial properties of chitosan and titanium dioxide that prevented the mildew
apparition, improving chitosan film wettability and hydrophilicity by the presence of the
inorganic nanoparticles.

Yuan et al. [66] developed a chitosan–titanium dioxide hybrid coating to enlarge the
shelf life of Stauntonvine fruit, finding that the physicochemical (titratable acidity, total
soluble solids, and ascorbic acid) properties of the hybrid-coated fruit were preserved
after storage (45 days at 25 ◦C). These effects were attributed to an internal atmosphere
modification that slow some metabolic processes (respiration and transpiration) due to
the reduction in the carbon dioxide transmission coefficient (27 g d−1) compared to the
chitosan-coated fruit (35 g d−1). Furthermore, it has been reported a reduced respiration
rate effect (oxygen concentration of 5%) in mushrooms coated with a chitosan–titanium
dioxide-thymol film, with a decrease in microbial counts (20% of oxygen, yeast, and molds
of 4.27 log CFU/g) and polyphenol oxidase activity (17 U/mg protein) after 12 days of
storage at 4 ◦C, compared to those observed in CS-coated (yeast and molds of 6.17 log
CFU/g and PPO of 45 U/mg protein) without significant changes in physicochemical
parameters such as pH, color attributes, total soluble solids, weight losses, and firmness,
which were associated with the inhibition of microbial growth and antioxidant properties
of the film, maintaining the mushrooms postharvest quality [67].

Tunma [37] reported that a cassava starch–titanium dioxide hybrid film effectively
extends the shelf life of bananas (14 days) and tomatoes (21 days) compared to those pack-
aged with plastic films (5 and 10 days, respectively). Furthermore, Abdel-Baky et al. [72]
informed that guar-gum films functionalized with TiO2 can preserve quality parameters
of dates for eight weeks stored at 0 ◦C without minimal changes in the fruit weight, color
attributes, total soluble solids, acidity, and phenol and flavonoid contents. Moreover,
treated fruit maintained an adequate microbial safety (yeast and molds) compared with
guar-xanthan-lemongrass essential oil coat. According to the authors, these behaviors were
attributed to the low oxygen/high carbon dioxide microclimate generated by the guar
gum–titanium dioxide hybrid film that directly slow some metabolic processes, preventing
dehydration and microbial deterioration of dates [37,72].
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Furthermore, Tian et al. [68] preserved Ginkgo biloba seeds up to 180 days (1 ◦C) by
coating them with chitosan–titanium dioxide films. They reported no significant changes
in firmness and antioxidant capacity after storage time. Additionally, seeds did not show
signs of mildew apparition, which were associated with the protective effect of the hybrid
film and their ability to delay the senescence of Ginkgo biloba seeds due to the slowdown
of the respiration rate (15 ng/kg s) and ethylene production (1.22 pg/kg s) compared to
the uncoated (25 ng/kg s and 3.69 pg/kg s, respectively) and CS-coated (23 ng/kg s and
4.70 pg/kg s, respectively) seeds.

Additionally, chitosan and cellulose-based packaging has been functionalized with
titanium dioxide for meat preservation (Table 3). Hosseinzadeh et al. [69] informed that the
hybrid film composed of chitosan, TiO2, and Cymbopogon citratus essential oil effectively
preserved minced meat quality during storage (7 days at 4 ◦C). They found that treated meat
is safe for consumption (total viable count of <7 log CFU/g) and exhibited no significant
changes in sensory attributes (odor, taste, and color) after the storage period compared to
those obtained in the uncoated (>9 log CFU/g) and CS-coated (>9 log CFU/g) meat. Results
were attributed to the antimicrobial properties of each component of the hybrid film and its
synergistic effect. Similar trends were reported by Alizadeh-Sani et al. [70], who informed
that lamb meat treated with a whey protein-cellulose nanofiber film functionalized with
TiO2 and rosemary essential oil maintained the microbial quality under safety criterion
(total viable count of 4.1 log CFU/g) after six days of cold storage (4 ◦C) without changes
in sensory attributes (odor, color, texture, and overall acceptability). Nonetheless, the
chitosan–titanium dioxide-rosemary essential oil hybrid film prevented the lipid oxidation
of meat during storage [71]. According to the authors, these results were associated with
the antimicrobial activity and antioxidant capacity of the film (mainly by the presence of
bioactive compounds in rosemary essential oil).

In general, functionalization of polysaccharides such as chitosan, starch, and cellulose
by incorporating titanium dioxide nanoparticles is a technological strategy to develop
packaging materials for fruit, vegetables, and meat preservation due to the antimicrobial
and antioxidant properties of the hybrid film that maintain the quality parameters of the
treated food products during storage.

4.3. Silver (Ag)

According to the literature, the main applications of silver nanoparticles are related
to their antimicrobial properties [73,74]. They exhibited high surface area, thermal and
chemical stability, and were not toxic [74]. Silver nanoparticles have been used in catalysis,
sensors, textile, cosmetics, biomedical, and pharmaceutical and cosmetics applications.
Furthermore, Ag nanoparticles have been explored as nanofillers for the development of
antimicrobial packaging materials for food preservation [75,76]. Table 4 summarizes the
application of polysaccharide–silver packaging and their effects on quality parameters of
some fruit and meat products.
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Table 4. Effect on the application of polysaccharide–silver (Ag) composite on the food quality.

Polysaccharide Ag Specifica-
tions Other Additives

Coating
Method/

Presentation

Food
Product

Storage
Conditions

Observed
Results Ref.

Chitosan
(1% w/w)

Commercial
Size: 200 nm

Phosphatidylcholine
and cholesterol
(50 mg at molar

ratio of 5:1)

Evaporative
casting/films

Pork
meat

4 ◦C for
15 days

Hybrid films
preserved the
meat quality

during.

[77]

Bacterial
cellulose

Piece (2 cm ×
2.5 cm ×
0.3 cm)

Conc.: 1%
w/w

Size: 10 nm
NI

Evaporative
cast-

ing/plasmonic
nanopaper

Fish 60 h

Color change
suggested a food
decomposition

process.

[78]

Bacterial
cellulose

Piece (2 cm ×
2.5 cm ×
0.3 cm)

Conc.: 1%
w/w

Size: 10 nm
NI

Evaporative
cast-

ing/plasmonic
nanopaper

Meat 60 h

Color change
suggested a food
decomposition

process.

[78]

Cellulose
acetate

(1% w/w)

Conc.: 0.05 g
Size: ~7 to

40 nm

Triethyl citrate
(0.2 g)

thymol (0.08 g)

Evaporative
casting/films

Ethanol (as
fatty food
simulant)

NI

Hybrid films
exhibited

antioxidant
properties.

[79]

Sodium
alginate

(10% w/w)

Conc.:
80 µg/mL

Size: Size of
5–40 nm

Glycerol
(1 mL)

Evaporative
casting/films Carrots 4 ◦C for

10 days

Hybrid films
enhanced the

shelf life of
carrots.

[16]

Sodium
alginate

(10% w/w)

Conc.:
80 µg/mL

Size: Size of
5–40 nm

Glycerol
(1 mL)

Evaporative
casting/films Pears 4 ◦C for

10 days

Hybrid films
enhanced the

shelf life of pears.
[16]

NI: No information; Conc: nanoparticles concentration.

Most of the reported polysaccharide-based packaging functionalized with silver
nanoparticles for food preservation are focused on meat and fruit (Table 4). Wu et al. [77]
functionalized a chitosan-based coating incorporating laurel essential oil and silver nanopar-
ticles for pork meat preservation. They reported that after 15 days of cold storage at 4 ◦C,
treated meat maintained its sensory quality (color, flavor, elasticity, viscosity, and good
leakage) compared to those obtained in the uncoated samples that exhibited perceptible
changes, mainly associated with changes in pH values, which were lower in the treated
meat (from 5.5 to 6.5) than the uncoated meat (from 5.5 to 7.1). According to the authors,
pH values >6.7 suggest a meat deterioration process. Furthermore, the total volatile base
nitrogen content in treated meat was under legislative specifications following Chinese
food safety standards (<15 mg/100 g) after 15 days of storage in comparison with uncoated
sample (25 mg/100 g), which were attributed to the antimicrobial properties, antioxidant
capacity, and oxygen blocking ability of the film. Moreover, these facts could be associated
with the antioxidant properties of the hybrid film, as reported by Dairi et al. [79], who
evaluated the antioxidant capacity (by the 2,2-diphenyl-1-picrylhydrazyl radical scaveng-
ing test) of a cellulose–silver-thymol hybrid film using 95% ethanol as fatty food simulant.
They found that the hybrid film exhibited higher radical inhibition (94%) compared to those
obtained with a cellulose-thymol film (90%) due to the synergistic effect between individual
components and because the simulated system, promoting the release of silver-thymol
compounds from the film to the medium, influencing the antioxidant capacity of the film.

Heli et al. [78] developed a plasmonic nanopaper through silver ion attraction into a
cellulose network for fish and meat spoilage monitoring. They reported that the nanopaper
suffered color changes from amber to gray in fish, or from amber to taupe in meat in a time-
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dependent response, indicating a deterioration process in the food products. Nonetheless,
during the detection process, there were changes detected in the population density of silver
nanoparticles per µm2 of the nanopaper in fish (~1213) and meat (~1376) compared to the
control (~1473). The authors argue that ammonia and other volatile compounds are released
during the food degradation process that may promote the exposure to the corrosive vapors
partially or entirely etched to the silver nanoparticles of the cellulose nanopaper.

Additionally, Fayaz et al. [16] developed a sodium alginate film functionalized with
silver nanoparticles for carrots and pears preservation at 27 ◦C. They reported that the
hybrid film did not promote changes in the soluble protein content of the treated samples,
similar to those observed in the sodium alginate-coated carrots (0.531 mg/g); however,
after ten days of storage, all samples showed a decrease in this parameter (0.45 mg/g).
Furthermore, carrots and pears did not show significant weight losses and changes in their
sensory attributes than the control group that exhibited a perceptible spoilage process after
6 days of storage. These results were attributed to the antimicrobial properties and gas
exchangeability of the functionalized film.

According to these data, the functionalization of polysaccharide-based packaging with
silver nanoparticles has been widely used for their antimicrobial properties, an important
characteristic for food preservation. However, further studies are needed to evaluate the
potential migration risk of Ag nanoparticles from the polysaccharide-based material in real
food systems.

4.4. Silicon Dioxide (SiO2)

Silica nanoparticles (SiO2) are white and amorphous, they are a promising material
due to their intrinsic characteristics such as non-toxicity, thermal stability, chemical iner-
tia, low density, high surface area, porosity, biocompatibility, and biodegradability, and
exhibiting antimicrobial properties [80,81]. Furthermore, it is cheap and commercially
available [82]. Functionalization of polysaccharide using silicon dioxide nanoparticles
have received attention due to their high number of silanol groups, and to the ability to
form hydrogen bonds with the biopolymer enhancing their technological and functional
properties, suitable for food preservation [83–85]. Table 5 summarizes the application of
polysaccharide–silicon dioxide packaging and their effects on quality parameters of some
food products.

Silicon dioxide has been used as a functional agent to develop polysaccharide-based
food packaging capable of preserving fruit, mushrooms, and chicken fillets (Table 5). Yu
et al. [86] developed a biodegradable polyvinyl alcohol-chitosan-silicon dioxide (PVA-
CS-SiO2) film for cherries fruit preservation. They informed that coated fruit with PVA-
CS-SiO2 exhibited lower weight losses (8.30%) and browning index (97) compared with
uncoated (27.28% and 312, respectively) and polyvinyl alcohol–chitosan-coated (19.28%
and 123, respectively), which were associated with enhanced oxygen and moisture barrier
permeability of the hybrid film by the silicon dioxide functionalization, reducing fruit
dehydration, lipid oxidation, and rancidity degree.

Eldib et al. [87] evaluated the effect of chitosan–nisin–silicon dioxide film on the
quality parameters on blueberries during 8 days of storage at 28 ◦C. They reported that
coated fruit helped to control shrinking (38.5%) and decay rates (8.61%) with a weight
loss of 4% than uncoated fruit (60%, 35%, and 10%, respectively). Moreover, treated
fruit suffered minimal changes in their physicochemical parameters (pH, total soluble
solids, titratable acidity, and color) and sensory (hardness, chewiness, springiness, and
cohesiveness) attributes during storage; associated with the inhibition of microbial growth
(total viable count of 2.5 log CFU/g, and yeast and molds 3.5 log CFU/g), polyphenol
oxidase inhibition (600 U/min g), and preservation of vitamin C (8 mg/100 g) and total
anthocyanin (80 mg/100 g) content. Moreover, the coated fruit also had better appearance
than the uncoated fruit. These results were attributed to the antimicrobial properties and
gas exchangeability of the functionalized film.
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Table 5. Effect on the application of polysaccharide–silicon dioxide (SiO2) composite on food quality.

Polysaccharide
SiO2

Specifica-
tions

Other Additives
Coating
Method/

Presentation

Food
Product

Storage
Conditions

Observed
Results Ref.

Chitosan
(2% w/w) NI PVA (1% w/w) Evaporative

casting/film Cherries NI

Hybrid film
prevented loss

weight and
enzymatic
browning.

[86]

Chitosan
(1% w/w,
DD 85%)

Size: 15 nm

Nisin
(1% w/w)

Glycerol (0.5%)
Acetic acid

(1 mL/100 mL)

NI/film Blueberries 28 ◦C for
8 days

Hybrid films
prevented fruit

decay and
preserved their

quality
parameters.

[87]

Potato starch
(5% w/w)

Conc.: 0.3%
w/w

Commercial

Glycerin
(5% w/w)

Evaporative
casting/

film

White
mushroom

4 ◦C for
12 days

Hybrid films did
not promote

changes in the
quality

parameters
during storage.

[85]

Hydroxy
propyl methyl

cellulose
(4% w/w)

Conc.:
80 ppm

Size: ~80 nm

Glycerol at 30%
w/w

Evaporative
cast-

ing/coating

Chicken
fillets

4 ◦C for
15 days

Hybrid films
prevented
microbial

infection of
foodborne
pathogens.

[15]

NI: no information; DD: deacetylated degree; Conc: nanoparticles concentration; PVA: poly vinyl alcohol.

Zhang et al. [85] monitored changes in quality parameters in white mushrooms coated
with a potato starch–silicon dioxide hybrid film. In general, firmness (800 N), membrane
permeability (40%), weight loss (3%), and color attributes of mushrooms changed during
storage, associated with a deterioration of the metabolic process. However, mushrooms
coated with the hybrid film exhibited lower delayed effects by storage than the uncoated
samples (500 N, 55%, and 5%, respectively), attributed to a reduced exchange of water and
oxygen permeability.

Osman et al. [15] fabricated a hydroxy propyl methyl cellulose coating functional-
ized with silicon dioxide nanoparticles to extend the shelf life of chicken fillets. They
informed that the hybrid film is active against Bacillus cereus (2.5 log CFU/cm2), Salmonella
Typhimurium (3.5 log CFU/cm2), and Staphylococcus aureus (3.2 log CFU/cm2) preserving
raw chicken fillets up to 15 days at 4 ◦C (uncoated samples showed >7 log CFU/cm2 in all
tested bacteria).

According to these data, the functionalization of polysaccharides using silicon dioxide
nanoparticles can be applied as packaging material to extend the shelf life of different food
products. However, further studies must evaluate the hybrid film’s behavior in foods with
high water content.

4.5. Other Inorganic Nanomaterials Used to Develop Polysaccharide-Hybrid Packaging for
Food Preservation

Additionally, other inorganic nanoparticles such as halloysite, aluminum oxide,
montmorillonite, iron oxide, zirconium, and magnesium oxide have been incorporated
to polysaccharide-based materials to develop hybrid packaging for food preservation
(Table 6).
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Table 6. Functionalization of polysaccharide packaging with halloysite, aluminum oxide, montmorillonite, iron(III) oxide,
zirconium, and magnesium oxide nanoparticles for food preservation.

Nanoparticles
Specifications Polysaccharide Other Additives

Coating
Method/

Presentation

Food
Product

Storage
Conditions

Observed
Results Ref.

Halloysite
Conc.: 6 g

Commercial

Starch
(25% w/w)

Glycerol
(25 g)
Nisin
(6 g)

Extrusion/film Minas Frescal
cheese

4 ◦C
for

14 days

Inhibited Listeria
monocytogenes
proliferation.

[14]

Aluminum
oxide

Conc.: 80 ppm
Size of ~80 nm

Hydroxy
propyl
methyl

cellulose
(4% w/w)

Glycerol
(30% w/w)

Evaporative
casting/film

Chicken
fillets

4 ◦C for
15 days

Coated meat was
microbially stable

during storage.
[15]

Montmorillonite
Conc.: 2.5%

w/w
Commercial

Chitosan
(1.5% w/w)

Glacial acid
(1% v/v)
glycerol

(30% w/w),
REO or GEO

(2% v/v)
Tween 80

(0.2% w/v)

Evaporative
casting/film Poultry meat 5 ◦C for

15 days

Hybrid films
preserved the

quality
parameters

during storage.

[88]

Iron(III) oxide Sodium
alginate NI NI/coating

Apples,
carrots,

and brinjal
25 ◦C

Hybrid films
retarded decay in
coated products.

[89]

Iron(III) oxide Cellulose NI NI/coating
Apples,
carrots,

and brinjal
25 ◦C

Hybrid films
retarded decay in
coated products.

[89]

Zirconium
Conc.: 4 mmol

Commercial

Chitosan
(3% w/v)

Glacial
acid

(3% v/v)

Co-
precipitation
method/film

Tomatoes 25 ◦C for
7 days

Hybrid films
prevented fungal

infection.
[90]

Magnesium
oxide

Conc.: 0.2%
w/w

Commercial
Size of 20 nm

Chitosan
(2% w/w)

BSM (2% w/w),
glycerol (0.75%

w/w)
ZEO (2% w/w),

Tween 80
(0.25% w/v)

Evaporative
cast-

ing/coating

Rainbow
trout fillets

4 ◦C for
18 days

Coated fillets
showed extended
shelf life without

changes in
sensory attributes.

[91]

Magnesium
oxide

Conc.: 0.05%
w/v

Commercial
Size of 20 nm

Cellulose
(5% v/v)

Gelatin
(20%, w/v)

glycerin (3%, v/v)

Evaporative
cast-

ing/coating

Processed
Eggs

25 ◦C for
112 days

Hybrid films
extended the food

shelf life.
[92]

NI: no information; Conc.: concentration; REO: rosemary essential oil; GEO: ginger essential oil; BSM: basil seed mucilage; ZEO: Ziziphora
clinopodioides essential oil.

4.5.1. Halloysite (Hal)

Halloysite is a natural aluminum-silicate (Al2Si2O5(OH)4nH2O) with tubular-shape
nanotubes [93]. It possesses high surface reactivity, good mechanical strength, and thermal
stability properties [94–96]. Moreover, halloysite is a biocompatible and non-toxic mate-
rial that showed good dispersion in biopolymeric matrices [97,98], mainly by its positive
alumina and negative silica surface charges and its selective functionalization [99], which
could be used as a functional agent to develop packaging materials for food preserva-
tion [100,101].

Meira et al. [14] fabricated a starch-halloysite antimicrobial hybrid film to preserve soft
cheese at 4 ◦C (Table 6). They reported that inoculated cheese with Listeria monocytogenes
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(5 log CFU/g) showed a complete inhibition (under the detection limit of the method)
of microbial counts after 4 days of storage, and no counts were detected after 15 days,
similar to those observed in the starch-nisin film (after 1 day of storage). According
to the authors, electrostatic charges between nanoparticles and cell wall could disrupt
cell integrity causing bacterial death. Lee et al. [102] studied the antioxidant properties
of a chitosan film functionalized with halloysite and clove essential oil in a fatty food
simulant (alcohol at 95% at 25 ◦C). They found that hybrid films showed antioxidant
activity (55 to 65% of DPPH radical scavenging) in a halloysite concentration-dependent
response. According to the authors, the presence of halloysite stabilized the clove essential
oil in the chitosan film, increasing its antioxidant response.

4.5.2. Aluminum Oxide (Al2O3)

Aluminum dioxide nanoparticles exhibited good hydrothermal stability, optical, and
antimicrobial properties; they have a high surface area and porosity and are widely used
in cosmetics, paints, semiconductor materials, and active packaging [103,104]. It has been
reported that chicken fillets coated with a hydroxy propyl methyl cellulose-aluminum
dioxide hybrid film was microbiological stable during 15 days of storage at 4 ◦C compared
to the uncoated sample (Table 6). Nonetheless, the hybrid film was active against differ-
ent foodborne pathogenic bacteria such as Bacillus cereus (3.5 log CFU/cm2), Salmonella
Typhimurium (4 log CFU/cm2), and Staphylococcus aureus (4.5 log CFU/cm2) that permits
the preservation of raw chicken fillets up to 15 days at 4 ◦C (uncoated samples exhibited
>7 log CFU/cm2 in all tested bacteria) [15].

4.5.3. Montmorillonite (MMT)

Montmorillonite is a member of the smectite mineral group with a single crystal
structure, irregularly shaped particles, and a high surface area [105,106]. It is eco-friendly,
commercially available, and low-cost [107]. Moreover, montmorillonite is commonly
used as a nanofiller of polysaccharide-based packaging to enhance their physicochemical
properties [108,109].

Pires et al. [88] functionalized a chitosan-based film with montmorillonite nanoparti-
cles for poultry meat preservation (Table 6). In general, hybrid films effectively extended
the shelf life of fresh poultry meat up to 15 days at 4 ◦C. The moisture content of coated
meat was lower (70.8%) than uncoated samples (77.6%) with lower changes in color pa-
rameters during storage (total color change, 4.7, compared to 7.2, from red to brownish),
associated with the myoglobin loss and accumulation of metmyoglobin. Moreover, pH
values in coated meat decreased from 6.3 to 5.9 during the first three days, compared to 6.5
after storage, which was lower than the observed in unwrapped meat (pH 7.1 after 15 days).
Likewise, the use of the hybrid film prevents lipidic oxidation via malonaldehyde (MDA of
0.20 mg/kg) and microbial deterioration (total coliforms of 2.8 log CFU/g) in comparison
with uncoated meat (MDA of 1.71 mg/kg and 5.68 log CFU/g, respectively). These results
were attributed to the antioxidant and antimicrobial properties of the hybrid film.

4.5.4. Iron(III) Oxide (Fe2O3)

Iron(III) oxide magnetic nanoparticles have been used in recent years due to their low
toxicity, biocompatibility, and antimicrobial properties [110]. It has been incorporated into
polysaccharide matrices to develop drug-delivery systems [111], enzyme immobilization
to syrup production [112], and packaging materials with antimicrobial properties [10]
suitable for food preservation [89]. Alagu et al. [89] fabricated two hybrid films (cellulose
or sodium alginate) functionalized with iron(III) oxide nanoparticles to extend the shelf life
of apple fruit, carrots, and brinjal (Table 6). In general, coated fruit did not show changes
in protein content and weight loss compared to the control sample after storage at 25 ◦C.
Moreover, no significant changes in the sensory attributes (color, appearance, and texture)
were observed in treated fruit during the first 8 days of storage. According to Saedi and
Rhim [10], the polysaccharide-iron(III) oxide hybrid film exhibited potent antimicrobial
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activity against foodborne pathogenic bacteria, which could effectively extend the shelf
life of diverse food products. Moreover, it has been reported that iron oxide can act as an
oxygen scavenger, a suitable characteristic to preserve packaged foods [110].

4.5.5. Zirconium (Zr4+)

Zirconium nanoparticles have interesting industrial applications (biomedicine, sen-
sors, catalysis, cosmetic, and food technology) due to their thermal, optical, mechanical,
and catalytic properties [113]. It also exhibited good biocompatibility with biopolymers to
fabricate hybrid films [114]. Ejeromedoghene et al. [90] developed a chitosan-zirconium(IV)
complex as an antifungal spraying agent to control infected tomatoes with Aspergillus
niger (Table 6). They reported that the hybrid complex effectively inhibited the fungal
growth (tomatoes looked fresh) and reduced the weight loss (1.91%) after seven days of
storage at room temperature in a zirconium dose-dependent response than the observed
in control groups (uncoated fruit looks rotten with a weight loss of 3.2%). These results
were attributed to the antimicrobial properties of the film that extends the shelf life of
postharvest tomatoes.

4.5.6. Magnesium Oxide (MgO)

Magnesium oxide nanoparticles are a non-toxic white to gray powder, soluble in water
with ionic properties, suitable for diverse applications [115,116]. It has been used in phar-
maceutical, cosmetics, and catalysis, mainly by its high surface area, thermal stability, low
coordinate sites, structural defects on their surface, and antimicrobial properties [117,118].

Naeeji et al. [91] developed a basil seed mucilage-chitosan film functionalized with
Ziziphora clinopodioides essential oil and magnesium oxide nanoparticles activated via
gamma irradiation to rainbow trout fillets preservation (Table 6). They reported that the
coated fillets exhibited a maximum shelf life of 18 days at 4 ◦C. Additionally, all purchased
rainbow trout fillets showed safe microbial quality at the beginning of the study. In general,
coated fillets exhibited lower counts in total viable counts (5 log CFU/g), psychotropic
bacteria (4.5 log CFU/g), Pseudomonas spp. (4.5 log CFU/g), Pseudomonas fluorescens (4 log
CFU/g), hydrogen sulfide producing bacteria (2 log CFU/g), and Enterobacteriaceae (4 log
CFU/g) after the storage period than those observed in the control group (>7 log CFU/g
after 4 days). These results were attributed to the antimicrobial properties of the hybrid
film, mainly by the presence of Ziziphora clinopodioides essential oil and magnesium oxide
that suppress the bacterial growth altering the surface of the cell membrane leading to
microbial cell dead. Furthermore, the coated fillets showed a total volatile base nitrogen
content (19.99 mg N/100 g) below to the recommended limit stipulated by the European
Commission (25 mg N/100 g) with a peroxide value of 0.99 meq peroxide per 100 g of lipid;
suggesting that coated fillets preserved their freshness and sensory attributes (odor, color,
and overall acceptability) during storage, associated with a retarded microbial growth and
reduced lipid oxidation (control group showed 2.67 meq peroxide/100 g lipid).

Wang et al. [92] evaluated the effect of gelatin–bacterial cellulose–magnesium oxide
hybrid coating on the quality parameters of preserved eggs during 110 days of storage at
25 ◦C with 55% of relative humidity. They reported that the coated preserved eggs showed
a reduced weight loss (2%) than those observed in the control group (4.5%), associated with
the barrier properties of the hybrid coating to prevent a dehydration process. Moreover,
coated eggs (pH from 11 to 10) showed lower pH values after storage (control group pH
from 11 to 9.5). According to the authors, the hybrid coating blocked the eggshell pores
that prevented the oxidation process and avoided the loss of volatile alkaline nitrogen-
containing substances. Furthermore, sensory attributes (hardness, springiness, chewiness,
and color) of the coated preserved eggs were less affected during storage than the uncoated
samples, demonstrating a protective effect on the quality parameters of preserved eggs.

According to the evidence, the functionalization of polysaccharide-based packaging
incorporating inorganic nanoparticles such as halloysite, aluminum oxide, montmorillonite,
iron oxide, zirconium, and magnesium oxide is an interesting strategy applied for food
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preservation. However, further studies are required to validate their potential uses as food
packaging, mainly in foods with high amounts of water.

5. Disadvantages of Polysaccharide-Based Food Packaging Functionalized with
Inorganic Nanoparticles and Perspectives

Despite the observation that the functionalization of polysaccharide-based packaging
incorporating inorganic nanoparticles provides beneficial effects on food preservation, it is
necessary to evaluate the safe application of this kind of organic–inorganic food packaging
due to the presence of inorganic nanoparticles such as titanium dioxide, zinc oxide, silver,
silicon dioxide, halloysite, aluminum oxide, montmorillonite, iron oxide, zirconium, and
magnesium oxide in their composition and their interaction with the food product.

In this context, it is crucial to control or minimize the potential migration of nanopar-
ticles from packaging to food products [23]. Al-Naamani et al. [45] informed that the
migration of zinc oxide nanoparticles incorporated in a chitosan–zinc oxide hybrid film to
okra preservation might occur. They reported 1.8% of the total zinc oxide (0.08 mg/cm2) in
the coating released by a zinc ionization (Zn2+) after 12 days of storage at 25 ◦C. However,
the concentration was under the safe recommended dosage. Similarly, Vizzini et al. [42]
informed that zinc oxide doped with magnesium oxide used as functional agent of alginate
film did not show cytotoxic effects in U937 and HL-60 cell lines at concentration below
of 1 mg/mL, which may be safely used as reinforcement agent of polysaccharide-based
packaging for food preservation.

Recently, Enescu et al. [119] evaluated the specific migration according to the European
normative legislation (1130–1:2004) of titanium dioxide from a chitosan–titanium dioxide
hybrid film using ethanol at 95% and olive oil as food simulants under microwave and
dry ash digestions over 10 days. They concluded that a negligible amount of titanium
dioxide (<5.44 × 10−4% of the total titanium dioxide in the chitosan film) migrated from
the polymeric matrix to the simulated food model, but most of the titanium dioxide content
is chemically bonded in the chitosan matrix. Furthermore, they reported that the chitosan–
titanium dioxide hybrid complex did not show cell toxicity on in vitro tests (resazurin and
CCK8, and Caco-2 cells), suggesting that chitosan–titanium dioxide could be used as food
packaging material. Moreover, Alizadeh-Sani et al. [71] detected a low content of titanium
dioxide nanoparticles in a meat product coated with a whey protein-cellulose nanofiber
film functionalized with titanium dioxide but were <1% w/w and complied the Food and
Drug Administration specifications.

Similar trends were reported by Fortunati et al. [120], where the migration rate of
silver nanoparticles in a cellulose-Ag film immersed in ethanol solution at 10% did not
exceed the limit specifications established by the European Food Safety Authority in a
time-dependent storage response but mentioned that after 10 days, the number of liberated
nanoparticles increased due to moisture absorption into the polymer, suggesting their
use in food with low water content. Likewise, Abdullah and Dong [96] reported that the
presence of halloysite in a starch film showed minimal migration content, depending on the
hydrophilic, lipophilic, and acidic characteristics of the food products. Moreover, nanopar-
ticles migration can occur due to dissolution, diffusion, and abrasion of the packaging
material [121].

García et al. [121] mentioned that a negligible number of migrated nanoparticles
to the food system occur when organic–inorganic packaging is used, particularly for
those ionizable nanoparticles such as zinc or magnesium oxides; conversely to other
nanoparticles such as titanium dioxide that remain in the biopolymeric matrix, and thus
do not easily migrate. On the other hand, an inorganic nanofiller as a functional agent of
polysaccharide packaging for food preservation should be following the recommended
safe dosages, according to the international regulations [121]. Therefore, further studies are
needed to evaluate the migration of inorganic nanoparticles from the biopolymeric matrix
to food systems and their potential human health risks on the usage of this kind of hybrid
packaging for food preservation that permits the establishment of policies about the use of
inorganic nanoparticles as a functional agent of polysaccharide-based materials.
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Additionally, some limitations have been reported during the functionalization of
polysaccharide-based materials adding inorganic nanoparticles. The main reported limita-
tions include the interaction between polysaccharides and inorganic nanoparticles, as well
as their proper mixing ratio, and those associated with the concentration and dispersion of
the inorganic fillers that strongly influence (negatively or positively) the functional and tech-
nological properties of the hybrid material [122–125]. For example, the physicochemical
properties of the hybrid materials are influenced by their preparation method (mechani-
cal stirring and evaporative casting, electrospinning, dip-, spin-, and spray-coating, and
spray-drying) and the type of polysaccharide used, which are associated with chemi-
cal and physical interactions between polysaccharides and inorganic nanoparticles [1].
Moreover, the improper mixing ratio among components can affect the technological prop-
erties of the hybrid materials due to a saturation of the available functional groups in
the polysaccharide structure; nonetheless, there are not standardized protocols to prepare
polysaccharide-inorganic nanoparticles hybrid materials with desirable characteristics.

Another reported limitation is the concentration of nanoparticles added and their
effect on the physicochemical and structural characteristics of hybrid materials. According
to the evidence, the technological properties of the functionalized polysaccharide-based
materials are negatively affected by higher concentrations of nanoparticles, because of the
formation of agglomerates associated with an excessive and non-homogeneous dispersion
into the biopolymeric matrix, limiting their potential applications [126].

In general, the development of suitable protocols to fabricate polysaccharide-based
materials functionalized with inorganic nanoparticles that permits solving these limitations
is an area of opportunity for the food packaging industry.

6. Concluding Remarks

Significant evidence indicated that the functionalization of polysaccharide-based pack-
aging by incorporating inorganic nanoparticles is a suitable approach for food preservation.
The most studied polysaccharide includes chitosan, cellulose, and starch, while inorganic
nanoparticles are titanium dioxide, zinc oxide, silver, and silicon dioxide in a concentra-
tion ranged from 0.01 to 80 mg per 100 mL of film-forming solution. Moreover, films
(by dipping) and coatings (evaporative casting) are the most common methods to use
polysaccharide-hybrid packaging for food preservation.

In general, polysaccharide-hybrid packaging can preserve the quality parameters of
different food products. For example, treated fruit, vegetables, mushrooms, and Gingko
biloba seeds markedly increased their shelf life without significant changes in their quality
attributes, associated with a reduction in the deterioration process of the food products
due to the prevention of the water loss, non-enzymatic and enzymatic oxidation, and
microbial infections, mainly by the presence of inorganic nanoparticles. Similarly, hybrid
packaging showed protective effects to preserve meat products, cheese, and preserved eggs
by preventing microbial infections and lipid peroxidation, extending the food product’s
shelf life without changes in their sensory attributes.

As for the future fabrication of polysaccharide-hybrid food packaging is necessary to
evaluate the migration rate of inorganic nanoparticles from the polymeric matrix to the
food system and their possible human health risk. Moreover, there is no information about
the stability and structural changes in the hybrid food packaging, promoted by the time
and storage conditions when interacting with the food product. Therefore, further studies
are needed to guarantee the safe implementation of these organic–inorganic packaging
materials in the food industry.
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