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Infected with Mycobacterium lepraemurium
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hExperimental Pathology Section, Pathology Department, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Vasco de

Quiroga 15, Colonia Belisario Dominguez Seccion XVI, 14080, Deleg. Tlalpan, México City, Mexico
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Abstract—Murine leprosy is a systemic infectious disease of mice caused byMycobacterium lepraemurium (MLM)
in which the central nervous system (CNS) is not infected; nevertheless, diseased animals show measurable cog-
nitive alterations. For this reason, in this study, we explored the neurobehavioral changes in mice chronically
infected with MLM. BALB/c mice were infected with MLM, and 120 days later, the alterations in mice were evalu-
ated based on immunologic, histologic, endocrine, neurochemical, and behavioral traits. We found increases in
the levels of IL-4 and IL-10 associated with high bacillary loads. We also found increase in the serum levels of
corticosterone, epinephrine, and norepinephrine in the adrenal gland, suggesting neuroendocrine deregulation.
Mice exhibited depression-like behavior in the tail suspension and forced swimming tests and anxiolytic behavior
in the open field and elevated plus maze tests. The neurobehavioral alterations of mice were correlated with the
histologic damage in the prefrontal cortex, ventral hippocampus, and amygdala, as well as with a blood–brain bar-
rier disruption in the hippocampus. These results reveal an interrelated response of the neuroimmune–endocrino
logical axis in unresolved chronic infections that result in neurocognitive deterioration. � 2022 IBRO. Published by

Elsevier Ltd. All rights reserved.
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INTRODUCTION

Neurobehavioral alterations associated with chronic

infection processes are related to alterations in the

nervous, endocrine, and immunological systems, where

modifications in the levels of neurotransmitters,

hormones, and cytokines can worsen disease

symptoms and lead to behavioral disorders (Ashley and

Demas, 2017; Bereshchenko et al., 2018; Wang et al.,
lajara from ClinicalKey.com by Elsevier on June 22, 
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2019). The role of the neuroimmune-endocrine response

in chronic infections remains unclear, particularly in cases

in which the central nervous system (CNS) is not infected.

Therefore, using experimental models of chronic infec-

tions without involvement of the CNS will allow exploration

of the intricate feedback-loop interactions connected with

the disease (Demas and Carlton, 2015; Ashley and

Demas, 2017; Del Rey and Besedovsky, 2017). These

models have been used to investigate hypercortisolemia,

neurodegeneration, neurocognitive impairment and

anergy in both natural and experimental infections with

prolonged periods of disease (O’Connor et al., 2009;

Rodriguez-Zas et al., 2015; Hou et al., 2017; Mitchell

et al., 2017; Becerril-Villanueva et al., 2018; D’Attilio
Fig. 1. Spleen and liver in mice infected withMycobacterium lepraemurium (M

hepatomegaly in the group of mice having a 120-day infection with MLM (120

of the periarteriolar lymphatic sheath and marginal zone, and extensive

Hepatomegaly is also observed, with extensive granuloma fraction similar to

Hematoxylin-Eosin (HE) and Ziehl-Neelseen (ZN) stains, 40X. (**p < 0.001

figure legend, the reader is referred to the web version of this article.)
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et al., 2018; Lara-Espinosa et al., 2020). A fitting model

of disease is murine leprosy, a chronic infectious disease

caused by Mycobacterium lepraemurium (MLM) (Benjak

et al., 2017), which in advanced stages, resembles lepro-

matous leprosy (Løvik, 1987; Rojas-Espinosa and Løvik,

2001; Rojas-Espinosa, 2009). MLM is an invasive

microorganism that does not affect the CNS even in the

latest stages of the disease. Murine leprosy, however, is

a disease that affects working memory, suggesting that

it has an effect on the CNS through soluble mediators,

such as hormones, neurotransmitters and/or cytokines

(Rojas-Espinosa et al., 2005; Becerril-Villanueva et al.,

2018). Thus, murine leprosy is a model of chronic disease

suitable to explore neurobehavioral disorders such as
LM) for 120 days. The figure illustrates the marked splenomegaly and

days PI). (A) Histologically, mice in the 120-day PI group show atrophy

granuloma fraction in both the white and red pulp (arrows). (B)
the observed in the spleen representative images, (n = 14 per group)

where indicated). (For interpretation of the references to colour in this

lajara from ClinicalKey.com by Elsevier on June 22, 
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depression, anxiety, mental distress and fear, which have

been reported in patients with lepromatous leprosy

(Somar et al., 2020; van Dorst et al., 2020;

Govindasamy et al., 2021). Therefore, the aim of this

study was to identify the neuroimmuno-endocrine alter-

ations in mice suffering from a long-lasting infection with

MLM by evaluating the neurobehavioral changes associ-

ated with morphological damage in the prefrontal cortex-

hippocampus-amygdala circuit, as well as peripheral hor-

monal and immunological alterations.
EXPERIMENTAL PROCEDURES

This project was reviewed and approved by the

Committee of Ethics in Research of the National School

of Biological Sciences (CEI ZOO-010-2020). Mice were

handled under the regulations of the Official Mexican

Norm (NOM-062-ZOO-1999).
Fig. 2. Cytokines in the spleen and liver. The figure illustrates the presence o

proinflammatory IFN-c and IL-2 cytokines in the spleen and liver of mice o

granuloma fraction in both organs. As expected, no proinflammatory or anti-in

the control (non-infected) group representative images, (n = 5 per group). I
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Mice

A total of 80 male eight-week-old BALB/c mice acquired

from Harlan Mexico were used in this study. Mice were

housed in 25 � 30 � 15 cm polystyrene cages (five

mice per cage) maintained at a constant temperature

(23–24 �C) under 12 � 12 h light–dark cycles and were

fed purified water and food (Purina Chow, Mexico)

ad libitum.
Mycobacterium collection and mouse infection

Mice were infected with Mycobacterium lepraemurium

(MLM) isolated from the spleen and liver of a mouse

with a 4-month infection. Isolation and purification of

MLM were carried out as described by (Mendoza-

Aguilar et al., 2012), and bacilli viability was assessed

by the fluorescein diacetate-ethidium bromide method of

(Jarnagin and Luchsinger, 1980).
f anti-inflammatory IL-4 and IL-10 cytokines (arrows), and the lack of

f the 120-day PI group (120 days PI). Most staining appears on the

flammatory cytokines are expressed in the spleen and liver of mice in

mmunoperoxidase and Hematoxylin stains 40�.

lajara from ClinicalKey.com by Elsevier on June 22, 
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Forty mice were intraperitoneally inoculated with

20 � 106 MLM bacilli in 50 ml of physiological saline

solution (PSS), and forty mice in the control group

received plain PSS.
Histology and immunohistochemistry

To verify chronic infection, mice were sacrificed on day

120 postinfection (120-day PI) by intraperitoneal

injection of sodium pentobarbital (50 mg/kg body

weight). Then, they were intracardially infused with PSS,

followed by 4% paraformaldehyde in 0.1 M phosphate-

buffered saline (PBS) (5 min each). The spleen, liver,

brain, and adrenal glands were collected and kept in

formalin for 5 days, and then, the organs were weighed

and processed for inclusion in paraffin. Three-micron

thick sections were produced and placed on poly-L-

lysine-coated slides. Then, the sections were

deparaffinized, rehydrated, and stained with Ziehl-

Neelsen (ZN) and Hematoxylin–Eosin (H&E) stains. For

the immunohistochemical analysis, the tissue sections

were deparaffinized, the endogenous peroxidase was

quenched (with 0.3% hydrogen peroxide in

methanol/10 min), and the sites of unspecific binding

were blocked with 3% skim milk for 2 h. Then,

independent slides were incubated with rabbit anti-TNF-

a (ab34674), anti-IFN-c (ab216642), anti-IL-4 (PA5-

25165) and anti-IL-10 (ab189392) antibodies and with

anti-Iba-1 (ab153696) and anti-GFAP (ab7260)

antibodies to detect neuroinflammation. All the primary

antibodies were diluted 1:200 in PBS, while the

secondary antibody (peroxidase-labeled goat anti-rabbit

IgG) was diluted 1:1000. After immunostaining and

extensive washing with PBS–Tween, the sections were

stained with Hematoxylin, mounted in resin, and

examined under a Nikon Eclipse E8000 microscope

(Tokyo, Japan).
Blood–brain barrier permeability assay and confocal
microscopy imaging

Damage to the blood–brain barrier (BBB) was evaluated

in mice anesthetized with sodium pentobarbital (50 mg/

kg body weight). Evans’ Blue (EB) (2 mg/ml) was

intracardially inoculated (0.2 ml/100 g of body weight)

and allowed to circulate for 5 min. Then, mice were

transcardially perfused with PSS, followed by 4%

paraformaldehyde for 5 min. The brains were removed,

postfixed for 24 h and washed with 10% sucrose for

24 h. Coronal 40-mm thick slices were subsequently

prepared from the dorsal hippocampal region (Bregman

�2.54 and �2.80), and the slices were washed with

PBS and covered with VectaShield-DAPI mounting

medium (Vector Laboratories, Inc., Burlingame CA,

USA) for observation. Images were taken and analyzed

under an Axioscop 2 mot plus confocal fluorescence

microscope (Carl Zeiss, Mexico) at EC Plan-Neofluar

20X/0.5 ph2: LP650; BP 420–480; LP 505. Images were

processed with Arviris Vision 4D software (Arviris Co.,

Germany, 2018).
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Western blot

To assess the expression of proteins associated with the

blood–brain barrier, five control mice and five 120-day PI

mice time were killed by decapitation, and their brains

were removed. The hippocampus was dissected and

homogenized in RIPA buffer with protease inhibitors

(S8820 Sigma) and centrifuged at 13,500 rpm for

10 min at 4 �C, and the supernatant was frozen at

�80 �C until use. The protein concentration was

determined by the Bradford method (BioRad), and 50-

mg samples were resolved by denaturing polyacrylamide

gel electrophoresis (10% SDS–PAGE). Then, the

proteins were electrically transferred to nitrocellulose

membranes for immunodetection. For immunodetection,

the membranes were blocked for 2 h with 5% nonfat

milk in Tris-buffer saline (150 mM NaCl, 50 mM Tris-

HCl, pH 7.6.) and then incubated overnight at 4 �C with

rabbit anti-claudin-5 (ab15106), occludin (ab167161),

ZO-1 tight junction protein (ab96587) and GAPDH

(ab8245) antibodies diluted 1:1000 in TBST (0.1%

Tween-20 in TBS) with 5% BSA. The membranes were

washed three times (10 min each) with TBST, incubated

with a horseradish peroxidase-conjugated secondary

polyclonal goat anti-rabbit IgG (ab205718 1:10,000)

antibody, and revealed using a commercial

chemiluminescence detection system (Amersham,

RPN2232). Semiquantitative analysis was performed

using the C-Digit program (LI-COR Image Studio,

Version 3.1). GAPDH was used as a reference standard.
Morphology and neuroinflammation of brain regions

To estimate the damage associated with chronic MLM

infection, the brains of 5 healthy mice and 5 120-day PI

mice were processed as described above for

histological and immunohistochemical analyses. The

regions that were examined were the cortex, ventral

hippocampus in (CA1, CA3, and Gyrus Dentatus), and

amygdala; rabbit antibodies against Iba-1 (ab153696)

and GFAP (ab7260) were used in the analysis, and five

independent fields per region were evaluated under a

Nikon Eclipse E8000 microscope (Tokyo, Japan).
Behavioral testing

Behavioral testing is a validated and widely used

procedure to assess depression and anxiety-like

behavior in rodents (Bailey, 2009; Castagné et al., 2011;

Steimer, 2011). In this study, five tests were used to eval-

uate these parameters in six 120-day PI MLM mice and

six control mice. These tests included the open field test

(OFT), the elevated plus-maze (EPM) test (Bailey,

2009), the forced swimming test (FST), and the tail sus-

pension (TS) test (Petit-Demouliere et al., 2004; Cryan

et al., 2005; Kara et al., 2018). All tests were performed

in individual, separate, mice to avoid cumulative stress

due to manipulation and rotation of mice in multiple tests.

The experimental groups were housed three days before

testing in a sealed and acoustically isolated room under

bright lighting (400 lux) for adaptation. All the behavioral

trials were performed during the first 4 h of the dark phase
lajara from ClinicalKey.com by Elsevier on June 22, 
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of the light cycle. Before each trial,

the equipment was cleaned with

75% ethanol and allowed to dry to

prevent olfactory cues from influ-

encing mouse behavior. All of the

behavioral tests were video

recorded, and analysis of the

videos was performed by two inde-

pendent evaluators to eliminate

subjective interpretations.

Depression-like behavior
Forced swim test. This test was

performed in transparent Plexiglas

cylinders (height, 21 cm; diameter,

14.5 cm) filled with water (22–24

± 0.5 �C, 15 cm depth) in 5-min

sessions. Immobility behavior was

scored when mice remained

floating and treading just enough

to keep their nose above the

water. After the swimming

sessions, the mice were removed

from the cylinder, gently dried,

placed in warm cages for 20 min,

and returned to their housing

cages.

Tail suspension. For this test,

mice were individually placed in an

acrylic box (20 cm wide � 20 cm

deep � 30 cm high) and fastened

by their tail with adhesive tape

placed 1 cm from the tip of the

tail. Each mouse was suspended

for 5 min, and the immobility

behavior was scored when the

mouse remained passively hung

and completely motionless.

Anxiolytic behavior
Open field test. This test was

performed during 5 min per animal

in a cubic device

(50 � 50 � 50 cm) with

transparent acrylic walls and a

black floor. White lines drawn on

the black floor divided the area

into sixteen, 12.5 � 12.5 cm

squares. Four squares in the

central area, surrounded by 12

peripheral squares, were selected

as the probe area. The number of

entries into the central area and

the time spent there (4 paws

inside), were registered with a

digital video camera to assess the

anxiolytic-like behavior.
 Elsevier on June 22, 
c. All rights reserved.
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Elevated plus maze. This test consisted of four

wooden arms of equal size (30 cm long, 5 cm wide) in

which two closed arms were perpendicular to two open

arms. The intersecting open and closed arms formed a

central 5 � 5 cm square platform. The two closed arms

had 40-cm high dark walls, and the two open arms had

0.5-cm high protection ledges. The arms were arranged

to form a ‘‘plus” (+) sign. The maze was elevated

50 cm above the floor. This test was performed for

5 min per animal and the time spent and the number of

entries into an open arm were registered with a digital

video camera. An entry was scored when all four paws

were inside of either an open or a closed arm.

Corticosterone levels

Corticosterone levels in serum were determined by using

a commercial ELISA kit (ADI-900-097 Enzo Life Science)

following the manufacturer’s instructions. Absorbance

was measured at 450 nm in a Sunrise TECAN

microplate reader, and the corticosterone concentration

was calculated from a standard curve fit to a semilog

plot in Excel (Microsoft, Redmond, WA, USA).

Neurotransmitters quantification

To quantify norepinephrine (NE) and epinephrine (EP), the

adrenal gland was homogenized in 400 ll of a solution

containing 5% ascorbic acid, 200 mM sodium phosphate,

2.5 mM L-cysteine, and 2.5 mM EDTA. Then, protein was

precipitated by adding 100 ll of 0.4 M perchloric acid,

followed by incubation at 20 �C for 20 min. After

centrifugation at 12,000 rpm for 10 min at 4 �C, the

supernatants were collected and used to quantify the

levels of NE and EP by reversed-phase high-pressure

liquid chromatography (RP-HPLC) following the standard

procedure (Becerril-Villanueva et al., 2018; Barbosa

Méndez and Salazar-Juárez, 2019; Lara-Espinosa et al.,

2020; Maldonado-Garcı́a et al., 2021).

Statistical analysis

In all cases, a Shapiro–Wilk normality analysis was

performed. The comparison between groups was

carried out by a one-way analysis of variance (ANOVA)

test, followed by a post-doc test (Bonferroni), using the
Fig. 3. Disruption of the blood–brain barrier in the hippocampus of

mice at 120 post infection days with MLM. Image from the control

group shows a histologically preserved hippocampal structure without

parenchymal infiltrate (A). Atrophy in the molecular layer of hip-

pocampus is observed in the 120-day PI group (B). Confocal images

illustrate Evans’ Blue distribution in the hippocampal regions. Evans’

blue is observed within the vascular compartment in the control

group, while it is observed within the hippocampus parenchyma in the

120-day PI group owing to vessels disruption (C). The 3D recon-

structions illustrate Evans’ Blue flow through the vessels’ lumen (D).
Diffusion of the dye to the tissue parenchyma is observed in the 120-

day PI group. Representative Western blot result of hippocampal

extracts from control and 120-day PI groups showing a reduction in

the expression of the tight junction proteins zonula occludens (ZO-1),

occludin (Ocldn) and claudin-5 (Cldn-5) in the 120-day PI group (E).
Representative results, (n = 5 per group). (*p < 0.05, **p < 0.001,

where indicated).
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SPSS v21 and SigmaStat v11 programs. The value of n

represents the number of individuals used in each test.

The correlation analysis between neuronal damage and

behavioral disturbances was performed using a

Spearman correlation analysis. A value of p < 0.05 was

considered statistically significant in all cases. Graphs

were made using Prism 9 software. Data are shown in

box plots and whiskers plots. In the box plots, a black

line within the box marks the median. The boundary of

the box indicates the 25th and 75th percentiles.

Whiskers above and below the box indicate the 5th and

95th percentiles.

RESULTS

Histopathological changes in the liver and spleen

Compared to normal mice, chronically infected mice

showed splenomegaly (8.5-fold increase, F = (1,26)

487.15 p < 0.001) and hepatomegaly (0.6-fold

increase, F = (1,26) 127.19 p < 0.001). Atrophy was

observed in several organs, including bone marrow, the

liver, and the spleen. In these organs, extensive

coalescing granulomas composed of AFB-laden

macrophages and epithelioid and multinucleated cells

were observed (arrows) (Fig. 1A, B).

Cytokine expression in the liver and spleen

No expression of the type-1 cytokines IFN-c and IL-2 was

observed in the control group or the 120-day PI group in

either the spleen or liver (Fig. 2A–H). However, the

type-2 cytokines IL-4 and IL-10 were present in the 120-

day PI group, mainly in macrophages and epithelioid

cells spread throughout the tissue parenchyma (Fig. 2 I-

P).

Blood–brain-barrier permeability

Chronic infection selectively increased the permeability of

the BBB in the 120-day PI group (Fig. 3B). Confocal

microscopy allowed to see the tracing dye distribution in

blood vessels; in the micrographs, a conserved

morphology is observed in the control group which does

not allow the entrance of Evans blue (EB) into the tissue

parenchyma (Fig. 3C). The 120-day PI group shows

ruptured blood vessels and the entrance of the dye into

the parenchyma (red) (Fig. 3C). The 3D reconstruction

image shows the diffusion of EB through the

lacunosum-molecular layer, molecular layer, and the

hippocampus hilus can be observed (Fig. 3D). The

expression of tight junction proteins associated with

BBB permeability was notably reduced in the 120-day PI

group claudin-5F = (1,8) 37.29 p < 0.001, occludin

F = (1,8) 32.64 p < 0.001, ZO-1F = (1,8) 8.51

p < 0.05 (Fig. 3E).

Neuroinflammation

Regarding the neuroinflammatory status, an increase in

immunostaining for GFAP was observed in the 120-day

PI group compared with the control group: cortex

F = (1,38) 8.00 p < 0.05, hippocampus F = (1,38)
lajara from ClinicalKey.com by Elsevier on June 22, 
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Fig. 4. Analysis of glia in brain regions during chronic infection with MLM. Representative immunostaining images for GFAP and Iba1 in the cortex,

hippocampus, and amygdala. GFAP-positive glial cells (arrows) are present in the three regions in the 120-day PI group (A). Immunostaining for

Iba-1 is stronger in the cortex and hippocampus region (arrows) in the 120-day PI group (B). Percent damage was calculated by evaluating 25

independent 400� fields (n = 5 per group) (*p < 0.05, **p < 0.001, where indicated).
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Fig. 5. Neurobehavioral disorders associated to chronic infection with MLM. Depression-like behavior in the 120-day PI group increases the time of

immobility in the tail suspension (A) (n = 5 per group) and the forced swimming (B) tests (n = 6 per group). In the elevated plus maze test, mice in

the 120-day PI group showed increased entrance and permanence ratios into the open arms (C) (n = 6 per group). Mice in the 120-day PI group

showed an increased entrance ratio to the central quadrant as well as an increased residence time in the open field test (n = 5 per group) (D). All
tests were performed on individual mice to avoid cumulative stress (*p < 0.05, **p < 0.001, where indicated).
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Table 1. Behavior and neuronal damage correlation in cortex, ventral hippocampus (CA1, CA3 Dentate gyrus) and amygdala

Tail Suspension

Immobility (s)

Forced Swim

Immobility (s)

Elevated Plus

Open Arms

Permanence (s)

Open Fiel

Quadrants Central

Permanence (s)

rs rs rs rs

Cortex 0.8333* 0.7142 0.7784* 0.8333*

CA1 0.9285** 0.5714 0.9221** 0.7142

CA3 0.7619* 0.7857* 0.6467 0.6666

Dentate gyrus 0.8095* 0.8571* 0.7425* 0.8333*

Amygdala 0.6904* 0.8333* 0.6347 0.7142

Spearman correlation test of Shapiro-Wilk test Normalized-data. Statistical significance is represented as *p < 0.05, ** p < 0.005 (two tailed).
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243.66 p < 0.001 and amygdala F = (1,38) 13.79

p < 0.001 (Fig. 4A). The expression of the marker Iba-

1 was found increased in two of the analyzed regions:

cortex F = (1,27) 68.54 p < 0.001 and hippocampus

F = (1,26) 150.54 p < 0.001 but no differences were

observed in the case of amygdala (Fig. 4).

Alterations in depression and anxiety behavior

Tests for depression and anxiety behavior were

performed in separate groups of animals to avoid

cumulative stress between mice. A significant difference

in immobility between the control and 120-day PI groups

was observed in both tests forced swimming,

F = (1,10) 42.78 p < 0.001 (Fig. 5A) and tail

suspension, F = (1,8) 23.53 p < 0.001 (Fig. 5B).

Immobility in both tests is correlated with depression-like

behavior.

Anxiolytic behavior was evaluated with the elevated

plus maze (EPM) test and open field test (OFT). In the

EMP test, compared with those in the control group, the

120-day PI group showed an increase in the time

permanence in the open arms (sec) F = (1,10) 28.62

p < 0.001 and in the number of entries to the maze’s

open arms F = (1,10) 66.81 p < 0.001 (Fig. 5C), while

in the OFT, the 120-day PI group demonstrated an

increased permanence time (sec) in the central

quadrants F = (1,8) 12.91 p < 0.01, which was

correlated with the increase in the number of entrances

to the central zone F = (1,8) 10.24 p < 0.05 (Fig. 5D).

Neural atrophy parameters

To assess CNS damage, the cortex, amygdala, and

hippocampal ventral regions (CA1, CA3 and gyrus

dentatus, GD) were analyzed. The changes indicative of

neuronal damage included basophilic pyknotic nuclei,

acidophilic cytoplasm, and fragmented nuclei. Neurons

with normal characteristics were observed in the three

regions analyzed in the control group. In the 120-day PI

group, the cortex showed an increased number of cells

with pyknotic nuclei and cytoplasmic contraction

F = (1,42) 1154.72 p < 0.001. In amygdala, an

increased percentage of morphologically damaged cells

was observed F = (1,38) 116.84 p < 0.001. In the

hippocampus, the CA1 region showed the greatest

number of cells with nuclear and cytoplasmic atrophy

F = (1,34) 394.94 p < 0.001, followed by the CA3

F = (1,34) 345.5 p < 0.001 and GD regions
Downloaded for Anonymous User (n/a) at University of Guada
2022. For personal use only. No other uses without permission
F = (1,38) 308.78 p < 0.001. Despite these alterations,

no acid-fast bacilli or inflammatory infiltration was

observed in these regions (Fig. 6).

Correlations between behavioral changes and

morphological alterations were evaluated with the

Spearman–Shapiro–Wilk correlation test. It was found

that the depression-like behavior tests, TST and FS,

positively correlated with morphological alterations in all

evaluated regions: Cortex, CA1, CA3, dentate gyrus and

amygdala (p < 0.05 to <0.005), and this was also so

in the tests for anxiolytic behavior EPM and OP

(p < 0.05 to <0.005) (Table 1).
Alterations in adrenal gland and serum
corticosterone

General atrophy was observed in the 120-day PI group,

including thickening of and fibrosis in the adrenal

capsule, reduction of the thickness of the cortex layers,

cells with a vacuolated cytoplasm, and loss of cells.

Macrophages harboring mycobacteria but not

granulomas were present in the parenchyma gland

(Fig. 7A). The levels of epinephrine F = (1,6) 114.36

p < 0.001 and norepinephrine F = (1,6) 162.75

p < 0.001 (Fig. 7B), as was the level of corticosterone

in serum F = (1.8) 37.76 p < 0.001 (Fig. 7C).
DISCUSSION

Murine leprosy is a chronic granulomatous disease

characterized by loss of the cellular immune response,

which leads to anergy. This immunological alteration

allows sustained growth of the bacillus (M.
lepraemurium) and the development of a systemic

infection that affects the viscera and skin. The lesions

in chronic murine leprosy are similar to those

observed in patients with untreated lepromatous

leprosy (LL) (Rojas-Espinosa and Løvik, 2001; Rojas-

Espinosa, 2009; Juarez-Ortega et al., 2015; Rojas-

Espinosa et al., 2020). Despite being a systemic infec-

tion, the disease does not affect peripheral nerves or

the central nervous system (CNS) (Rojas-Espinosa

et al., 2005; Becerril-Villanueva et al., 2018), which

makes murine leprosy an adequate model to explore

the morphologic and behavioral changes involved in

the anxiolytic and depression-like behaviors observed

in diseased animals.
lajara from ClinicalKey.com by Elsevier on June 22, 
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Fig. 6. Cellular atrophy in nervous tissue in the absence of MLM. Representative images of the cortex, hippocampus, and amygdala regions in the

120-day PI group showing neurons with contracted cytoplasm, pyknosis, and fragmented and acidophilic nuclei (arrows). No inflammatory lesions or

bacilli were found in the analyzed regions (n = 5 per group). The percent damage was calculated by evaluating 25 independent 40� fields.

Significant differences from the control group were observed in the hippocampal ventral CA1, CA3, GD, cortex and amygdala regions (**p< 0.001).

HE and ZN stains.
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In line with previous reports on murine and

lepromatous leprosy, we observed marked
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splenohepatomegaly in mice bearing a 120-day infection

with MLM that was caused by the accumulation of
lajara from ClinicalKey.com by
. Copyright ©2022. Elsevier Inc
macrophages with a large number

of bacilli. Extensive granuloma

fractions composed of

macrophages full of bacilli were

observed in the residual

parenchyma of both organs

(Herrerias et al., 1980; Hickey

et al., 2015; Becerril-Villanueva

et al., 2018; Massoth and Abner

Louissaint, 2020; Rojas-Espinosa

et al., 2020). The absence of IL-2

and IFN-c expression was

observed in both organs, but IL-4

and IL-10 were highly expressed.

These results are consistent with

the findings in other models of

chronic infection with mycobacteria

in which cellular anergy is also eli-

cited (Hernandez-Pando et al.,

1996; Rojas-Espinosa and Løvik,

2001; Hurtado Ortiz et al., 2009;

Rojas-Espinosa, 2009; Juarez-

Ortega et al., 2015; Mitchell et al.,

2017; Becerril-Villanueva et al.,

2018; Rojas-Espinosa et al., 2020;

Röltgen et al., 2020). IL-4 and IL-

10 are cytokines that are involved

in phagolysosomal maturation pro-

cesses and the microbicidal activity

of macrophages and polarize the

response towards a Th2 profile

through activation of the Janus

kinase 1 (JAK1)/Tyk2/STAT3/

JAK2/STAT6 pathway; their anti-

inflammatory activity is, however,

a homeostatic host response that

restrains the severe effects of

chronic inflammation. Our finding

of a lack of fibrotic lesions in the

spleen and liver in the experimental

group was consistent with those of

previous studies (Van Meegeren

et al., 2012; Wynn and Vannella,

2016; Steen et al., 2020). The

integrity of the blood–brain barrier

(BBB) plays a key role in prevent-

ing potentially neurotoxic mole-

cules from accessing the CNS

(Zhao et al., 2015; Besedovsky,

2019). We found an increase in

BBB permeability in the molecular

layer of the hippocampus of mice

in the 120-day PI group, together

with a decrease in the expression

of the tight junction proteins ZO1,

Cldn5 and Ocldn. These data sug-

gest that specific BBB disruptions

are associated with chronic inflam-

matory processes, as has been
 Elsevier on June 22, 
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reported in infection with M. tuberculosis (Hurtado-

Alvarado et al., 2017, 2018; Nwafor et al., 2019; Xu

et al., 2019; Lara-Espinosa et al., 2020). The role of IL-

4/IL-10 in the opening of the BBB is not entirely clear.

An increase in gliosis markers is commonly observed in

BBB disruptions, although it can occur without BBB

alterations; accordingly, we found increases in GFAP

and Iba-1 expression in the cortex, ventral hippocampus

(vHPC), and amygdala in the experimental group. IL-4

may increase BBB permeability in the hippocampus as it

does in neonatal mice (Wang et al., 2018). IL-10, on the

other hand, is an anti-inflammatory cytokine; its marked

expression in the CNS of mice in the 120-day PI group

suggests that it plays a role in controlling the damage

caused by neuroinflammation (Lin et al., 2018; Porro

et al., 2020).

Inflammatory events in the CNS can be associated

with neurobehavioral impairment. In our study, mice in

the 120-day PI group showed significant alterations

indicative of depression and anxiolytic-like behaviors,

similar to those described in other models of chronic

stress and infections with other mycobacteria

(Rodriguez-Zas et al., 2015; Becerril-Villanueva et al.,

2018; Cui et al., 2020; Lara-Espinosa et al., 2020).

In the tail suspension and forced swim tests, mice in

the 120-day PI group showed a significant increase in

immobility time, indicative of depression-like behavior;

this neurobehavioral alteration was correlated with the

histologic damage observed in the prefrontal cortex,

including thinning due to neuronal atrophy and

alterations of emotional balance (Drevets, 2007;

Christoffel et al., 2011; Späti et al., 2015). Lesions in the

CA1, CA3, and GD regions of the vHPC were also asso-

ciated with behavioral disturbances. Similar studies in

humans and other animal models have also studied the

relationships of the decrease in size of the hippocampus,

neuronal atrophy and decreased neurogenesis with dis-

turbances related to depression-like behavior (Videbech

and Ravnkilde, 2004; Fanselow and Dong, 2010;

Christoffel et al., 2011; Schoenfeld et al., 2017; Fang

et al., 2018; Gulyaeva, 2018).

Mice from the 120-day PI group exhibited increases in

the time of permanence and in the number of entries to

the open arms zone and central quadrants in the

elevated plus maze (EPM) test. The open field test

(OFT), which reflects a decrease in fear and protection

against a threat, revealed a hyperanxiolytic state in the

120-day PI group that has been related to dysregulation

of the basolateral amygdala circuit (BLA), vHPC and

prefrontal cortex (PFC) (LeDoux, 2000a; Adhikari, 2014;
Fig. 7. Atrophy in adrenal glands of mice chronically infected with

MLM. Representative images of adrenal glands of mice in the 120-

day PI, group showing fibrotic lesions in the capsule and atrophy in

the cortical area together with cytoplasmic vacuolization and thinning

of the cortical layer (arrows) (n = 5 per group). Few AFB-containing

macrophages were observed without granulomatous lesions (arrows)

(A). Epinephrine and norepinephrine levels in tissue (n = 4 per

group) (B) and corticosterone in serum (n = 5 per group) were

increased compared to levels in the control group (C). HE and ZN

stains, 40� (**p < 0.001, where indicated).

Downloaded for Anonymous User (n/a) at University of Guada
2022. For personal use only. No other uses without permission
Tovote et al., 2015). The atrophy in the PFC observed

in the 120-day PI group was consistent with cytotoxic

lesions and selective inhibition of the PFC-vHPC and

PFC-BLA circuits. The weakening of the functional con-

nectivity between these areas explains the breakdown

of this interconnection, which results in biochemical,

molecular, and electrophysiological abnormalities, and in

the breakdown of the excitation/inhibition (E/I) relationship

of some neuronal groups (Deacon et al., 2003; Franklin

et al., 2017; Kim and Cho, 2017; Spalding, 2018; Liu

et al., 2020). In addition, there is evidence that experi-

mental lesions in the vHPC favor an increase of time

spent in the anxiolytic zone in the EPM and OFT

(Kjelstrup et al., 2002; Felix-Ortiz et al., 2013; Felix-Ortiz

and Tye, 2014; Pi et al., 2020). On the hand, the amyg-

dala maintains a dynamic interconnection with the fear cir-

cuit and is a safeguard against threats (LeDoux, 2000b;

Felix-Ortiz et al., 2013; Adhikari, 2014; Felix-Ortiz and

Tye, 2014; Tovote et al., 2015; Korn et al., 2017;

McDonald and Mott, 2017; Liu et al., 2020). Thus, the cel-

lular atrophy in the PFC-vHPC-amygdala circuit could

explain the hyperanxiolytic state of the 120-day PI group

versus that of the control group.

Our results indicate dysregulations in the endocrine

system (ES) and sympathetic nervous system (SNS). In

addition to the morphological lesions in the cortical

zone, the increase in the serum levels of corticosterone

(CORT) in the 120-day PI group is consistent with

reports on increased CORT and IL-4/10 levels

associated to increased Th2 responses in other

mycobacterial infections (Auphan et al., 1995;

Hernandez-pando et al., 1998; Hernandez et al., 2013;

D’Attilio et al., 2018). In the CNS, depression-like behav-

ior has been associated with an increase in CORT, which

induces atrophy of the PFC, HPC and BLA (Videbech and

Ravnkilde, 2004; Baptista and Andrade, 2018; Fang et al.,

2018; Gulyaeva, 2018). In addition, there is evidence of

macrophages with the M2 b/c phenotype that secrete

CORT (data to be published). The increase in NE and

EPI in the 120-day PI group could play important roles

in increasing the bacillary load through inhibition of nitric

oxide (NO) production and differentiation of M2 macro-

phages (Sigola and Zinyama, 2000; Grailer et al., 2013,

2014; Lamkin et al., 2019; Gotovina et al., 2020).

In summary, the tridirectionally communication among

the CNS, endocrine, and immunologic systems is a

complex biological multisystem responsible for the

maintenance of harmony and homeostasis (Ponce-

Regalado et al., 2022). Infections are usually resolved

because of an efficient host response; however, infec-

tions that reach a chronic stage are excellent experimen-

tal models to study the key steps of the regulation/

deregulation of this multisystem and to discover critical

steps that can be modified to interfere with the progres-

sion of chronic diseases.
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