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Abstract: Organophosphorus pesticides (OPs) are widespread insecticides used for pest control
in agricultural activities and the control of the vectors of human and animal diseases. However,
OPs’ neurotoxic mechanism involves cholinergic components, which, beyond being involved in the
transmission of neuronal signals, also influence the activity of cytokines and other pro-inflammatory
molecules; thus, acute and chronic exposure to OPs may be related to the development of chronic
degenerative pathologies and other inflammatory diseases. The present article reviews and discusses
the experimental evidence linking inflammatory process with OP-induced cholinergic dysregulation,
emphasizing the molecular mechanisms related to the role of cytokines and cellular alterations in
humans and other animal models, and possible therapeutic targets to inhibit inflammation.

Keywords: organophosphorus pesticides; cholinergic system; inflammation

1. Organophosphorus Pesticides

In recent years, the application of pesticides has increased, as these substances allow
pest and disease control in agriculture and livestock, reducing losses in food production,
and allowing better control of vectors of human and veterinary diseases [1]. Currently,
the most commonly used pesticides worldwide are organophosphorus pesticides [2–4],
which are insecticides derived from phosphoric or phosphorothioic acid. In 2019, approx-
imately 2 million tons of pesticides were applied globally; in 2020, pesticides reached
up to 3.5 million tons, of which approximately one-third consisted of organophosphorus
pesticides [5,6].

Organophosphorus pesticides (OPs) are widely used as insecticides, and the use of OPs
has replaced organochlorine pesticides, as OPs have limited environmental persistence [1,7];
however, the incorrect handling of these substances during storage, transport, application
and the disposal of residues may cause toxic effects on non-target organisms, such as aquatic
organisms, domestic and wild fauna, and even humans [8]. Worldwide, more than 3 million
acute intoxications and up to 250,000 deaths caused by pesticides are reported annually [9];
OPs reach organisms via inhalation, dermal and oral exposure, the most common being
the last one [10]; once inside the organism, these substances are biotransformed (Figure 1a)
to highly toxic metabolites (oxon) by the metabolic activation of cytochrome P450 [11],
through the elimination of sulfur bound to phosphorus and the insertion of an oxygen
atom (oxidative desulfurization). Oxons are detoxified through dearylation and hydrolysis
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to produce dialkyl phosphates (DAP) or dialkyl thiophosphates, respectively [12], finally
by conjugative reactions; these metabolites are excreted out of the body through urine.
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Figure 1. General metabolic pathway of organophosphate pesticides with the neurotoxic mecha-
nism of action. (a) The parent organophosphorothionates bioactivated to highly toxic oxon forms
by cytochrome P450 through the removal of sulfur attached to phosphorus and insertion of the
oxygen atom (oxidative desulphuration) using the reactive and electrophilic iron–oxo intermediate,
detoxified by dearylation to form dialkyl thiophosphates (inactive metabolites) or further hydrolyzed
to dialkyl phosphates (inactive metabolites) by paraoxonase-1 (PON1) and carboxylesterase (CE) in
phase I. Furthermore, phase II involves conjugative reactions carried out by glutathione transferases
(GSTs); N-acetyltransferases (NATs); UDP-glucuronosyltransferase (UGTs); and sulphotransferases
(SULTs), UDP-glucuronyltransferases (UGT), sulphotransferases (SULT), N-acetyltransferases (NAT),
glutathione S-transferases (GST); and is excreted out through urine in a nontoxic form. (b) The oxon
metabolite phosphorylates the hydroxyl group of the serine present in the active site of the enzyme
acetylcholinesterase (AChE) causing ACh accumulation in the nerve synapsis [12].

Mechanism of Action of OPs and Toxicity

OPs are designed to inhibit acetylcholinesterase (AChE) activity (Figure 1b) by phos-
phorylating the hydroxyl group of the serine present in the active site AChE. This interrupts
the physiological action of AChE, which degrades the neurotransmitter acetylcholine (ACh),
causing its accumulation in the nerve synapses [13], leading to the overstimulation of the
muscarinic (mAChR) and nicotinic (nAChR) receptors, and consequently uncontrolled
nerve impulses and thus the death of insects [13–21]. However, the toxic effects of OPs do
not only affect pests; in fact, all organisms that possess cholinergic components can poten-
tially be affected (Table 1) [22–29]. In this sense, humans have a neuronal cholinergic system
and—when accidentally or occupationally exposed to these substances—can suffer both
acute and chronic effects; the acute effects usually occur minutes or hours after exposure
to Ops, and are manifested by clinical signs such as headaches, miosis, diarrhea, muscle
weakness, and salivation [30,31], whereas chronic exposure is associated with long-term
effects that are complex to attribute to the action of pesticides exclusively. Nevertheless,
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scientific evidence is growing that these substances induce mutations, epigenetic modifica-
tions, tumors, and several types of cancer, as well as cognitive and functional alterations
in several physiological systems such as the renal, circulatory, respiratory, endocrine and
immune systems [32–37]. Currently, several non-neuronal cells, such as pancreatic alpha
cells, endothelial cells, placental cells, thrombocytes, and lymphocytes express cholinergic
components, which make those cells a target for OPs [38–43].

Table 1. Effects on cholinergic systems by OP exposure.

OPs Dose Exposure Time Cholinergic
Effects Tissue/Cell Line Organism Model References

Diazinon LC50-7.830 ppm,
1/2 LC50-3.915 ppm 96 h ↓ AChE activity

↑ ACh levels
Spleen

mononuclear cells

Nile tilapia
(Oreochromis

niloticus)
[22].

Diazinon 0.97, 1.95 and
3.91 mg/L 6, 12, and 24 h

↓ AChE activity ↓
mAChR, nAChR
concentration and
↑ ACh levels.

Spleen
mononuclear cells

Nile tilapia
(O. niloticus) [23].

Diazoxon 1 nm, 1 µM, and
10 µM 24 h

↓ (M3, M4, M5)
receptors and

nAChR β2
expression.

Spleen
mononuclear cells

Nile tilapia
(O. niloticus) [24].

Paraoxon 1 mg/kg 6 and 24 h

↓mAChR M2
function
↑ ACh levels.
↑mAChR M3

stimulation

Peripheral blood Guinea Pig [25].

Chlorpyrifos LD50
1/3 LD50

48 h ↓ ChAT activity
↓ AChE activity Cerebral cortex Male Rat [26].

Chlorpyrifos 1 mg/Kg 1 h and 6 h

↓ ChAT activity,
nAChR α4, and
α7 expression
↓ VAChT

expression

Forebrain
Peripheral blood

Human apoE-TR
mice [27].

Monocrotophos 0.01, 0.10, or
1.00 mg/L N/A ↓ ChAT activity

↓ AChE activity Embryos
Sea urchin

(Hemicentrotus
pulcherrimus)

[28].

OPs Acute
exposure N/A ↓ BuChE activity Peripheral blood Human [29].

↑ increase ↓ decrease; ACh: acetylcholine; AChE: acetylcholinesterase; mAChR: muscarinic ACh receptor;
nAChR: nicotinic ACh receptor; ChAT: choline acetyltransferase; VAChT: vesicular ACh transporter; BuChE:
butyrylcholinesterase.

Therefore, several studies have reported that the alteration of the cholinergic system
induced by OPs can trigger an inflammatory response and, consequently, pathophysiologi-
cal alterations [19,44–47]. Thus, acute OP intoxication has been reported to stimulate an
instantaneous and premature robust inflammatory response, whereas chronic exposure
to low concentrations of OPs increases inflammatory mediators in a slow but sustained
manner [44], or that it could be related to the development of inflammatory diseases such as
organophosphate-induced delayed neuropathy (OPIDN) [19], rheumatoid arthritis [45,46],
and neuroinflammation [47]. Further studies have shown that exposure to OPs leads to
processes of cellular hyperreactivity, synergism with allergens, and the dysregulation of
lung physiology, thus promoting susceptibility to asthma development [48,49]. In addition,
recent research indicates that exposure to OPs may promote the development of early-stage
diabetes mellitus [50].

In the present review, an overview of the experimental evidence linking inflammation
to OP-induced cholinergic dysfunction is provided, and the molecular mechanisms through
which OPs may induce inflammatory responses are discussed.
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2. Cholinergic System

The cholinergic system consists of the biochemical and molecular machinery required
to synthesize de novo acetylcholine (ACh), a neurotransmitter that has been conserved
throughout evolution [51]. This machinery (Figure 2) consists of synthesis enzymes such as
choline acetyltransferase (ChAT, E.C. 2.3.1.6.), storage and transport elements such as ACh
vesicles (VaCh), the vesicular ACh transporter (VAChT), the choline transporter (CHT),
the muscarinic and nicotinic ACh receptors (mAChR and nAChR, respectively), degrada-
tion enzymes such as acetylcholinesterase (AChE, E. C. 3.1.1.7), and non-specific choline
esterases such as butyrylcholinesterase (BChE, E.C. 3.1.1.8.) [51]. This set of elements has a
fundamental role in the nervous system; however, it is not exclusive to neuronal cells [52,53],
as its presence has been demonstrated in other cells such as epithelial (respiratory tract,
intestine, skin, urothelium, vagina, placenta, and cornea), endothelial and immune system
cells (lymphocytes, macrophages, mast cells, eosinophils, and neutrophils) [54,55], which
have been called the “non-neuronal cholinergic system” or “extra-neuronal cholinergic
system”; this system is independent of neuronal innervation [39] and has been localized in
a wide variety of organisms such as humans and other mammals (rats), as well as lower
invertebrates (sponges, corals, ascidians, sea urchins, turbellaria), protozoa, plants, fungi
and even bacteria [54].
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Figure 2. Neuronal cholinergic system. Ch: Choline; A: acetate; ACh: acetylcholine; AChE: acetyl-
cholinesterase; ChAT: choline acetyltransferase; VaCh: ACh vesicles; mAChR: muscarinic ACh
receptor; nAChR: nicotinic ACh receptor.

As previously mentioned, epithelial, endothelial, and immune system cells (macrophages,
mast cells, eosinophils, neutrophils, and lymphocytes) are the targets of OPs [43]. In this
regard, Kawashima and Fujii [55] documented that mammalian lymphocytes express mus-
carinic and nicotinic acetylcholine receptors on the cell membrane, and also possess an
autonomous cholinergic system, i.e., a non-neuronal cholinergic system through which
they produce acetylcholine and degrade it via the enzyme AChE. Other cholinergic com-
ponents, such as choline acetyltransferase (ChAT), a high-affinity choline transporter, are
also expressed in lymphocytes [56]. At present, several studies report the effects of OPs
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on the vertebrate immune system [1,57–64]; nonetheless, the immunotoxic mechanisms
of these substances are not completely elucidated, as OPs could exert a direct cytotoxic
effect on lymphocytes, or indirectly, by altering the cholinergic system present in these
cells [43,65]. In this way, the lymphocyte cholinergic system could be targeted by OPs in the
immunotoxicity phenomenon, which could lead to systemic inflammatory manifestations
that manifest as neurological, cardiovascular, and autoimmune diseases [66].

3. Immunotoxicity of OPs through the Cholinergic System

In vertebrates, the modulation of the immune response by cholinergic pathways
is well established [21,67–69]. Processes like the development, proliferation, differentia-
tion and activation of immune cells have been linked to AChRs [70]. The stimulation of
mAChRs increases intracellular Ca2+ influx, upregulates c-Fos expression, and affects cell
proliferation [42]. In addition, mAChRs are related to immune defense, as they modu-
late inflammatory processes and antibody isotype switching [21,67]. Moreover, antigenic
stimuli induce the expression of cholinergic components in leukocytes [71]. Among regula-
tory processes of inflammation, the cholinergic anti-inflammatory pathway (CAP) plays a
prominent role, where the neurotransmitter ACh activates nicotinic receptors of inflamma-
tory cells, with the homopentameric receptor nAChR-a7 being one of the most important
participants, leading to a decrease in the synthesis of proinflammatory cytokines and LPS-
induced TNF and HMGB1 release [72,73]. Hence, the regulation of cholinergic pathways
through specific agonists and antagonists may represent a neuro-immune target in chronic
inflammatory diseases.

Immune cell function is highly regulated by classical soluble molecules, such as cy-
tokines, hormones, neurotransmitters, and by cell-to-cell interactions, and it can be directly
or indirectly affected by several factors, such as toxic lifestyle, iatrogenic, biotoxic, en-
vironmental/occupational, and psychosocial/socioeconomic conditions [74]. However,
epidemiological and toxicological evidence suggests that OPs exert immune side effects in
both humoral and cell mechanisms (innate or adaptive) [43,75]. Immune response pertur-
bation induced by OPs could be an enhancement (hypersensitivity and autoimmunity) or
immunosuppression (susceptibility to infections or neoplastic transformation) [76]. OPs can
exert toxic effects through mechanisms unrelated to AChE inhibition, as these compounds
can bind to cholinergic receptors [77]. In this regard, both the nerve agents Soman and
XV, as well as oxon metabolites of OPs (paraoxon, malaoxon, and diazoxon) can directly
interact with cholinergic receptors and modulate the level of receptor expression [78]. The
dysregulation of RNA and the protein expression of nAChR (α4 and β2 subunits) after
exposure to oxon metabolites was demonstrated in pC12 cells [79]. Likewise, it has been
shown that some OPs interact more often with the α4β2 subunits of neuronal nAChRs
to inhibit the agonist-induced response [80]. Such a finding suggests that, in addition to
AChE inhibition, the inhibition of neuronal nAChRs occurs, thus explaining the massive
blocking effect of anti-inflammatory metabolic pathways.

In addition, alterations of the neuronal cholinergic system have been reported in the
leukocyte cholinergic system, as it has been reported that exposure to diazinon (DZN)
in vivo (3.91 mg/L) causes a decrease in the protein concentration of nAChR and mAChR of
the immune cells of Nile tilapia [23]. Similar results were obtained by Charoenying et al. [81],
who showed that paraoxon causes cholinergic dysregulation in lymphoma (MOLT-3) and
neuroblastoma (SH-SY5Y) cell lines, finding that the lymphocyte extraneuronal cholinergic
system has greater susceptibility to OPs than its neuronal counterpart, which could be
related to immunotoxicity mechanisms. However, the mechanisms of immunotoxicity
induced by OPs such as DZN are not yet fully elucidated, although it has been proposed
that the extraneuronal cholinergic system could be related to immunotoxicity [22,81,82].

Furthermore, it has been reported that the overactivation of nAChRs and mAChRs
leads to increased calcium influx [24], which in turn induces increased ROS production,
as both processes are highly coordinated in these cell types [83]. Increased intracellular
calcium generates mitochondrial stress that promotes ROS production in this organelle
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(Figure 3a) [84]. Furthermore, the overactivation of cholinergic receptors in leukocytes has
a direct impact on cellular functions such as phagocytosis, which was demonstrated using
selective acetylcholine receptor agonists and antagonists [21,85].
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Figure 3. Modulation of signal transduction through the cholinergic system by OP exposure. Ex-
posure to OPs induces AChE inhibition and ACh accumulation, leading to AChR overstimulation.
(a) The overactivation of nAChRs and mAChRs leads to increased Ca2+ influx, which in turn induces
increased ROS in mitochondria. (b) Increased intracellular Ca2+ induces activation of p38-MAPK
and ERK signaling promoting an inflammatory stage through NF-KB the activation and increased
levels of pro-inflammatory cytokines (TNF-alpha and IL-6). In addition, intracellular Ca2+ signaling
evokes the up-regulation of c-fos expression and IL-2-induced signal transduction in T and B cells,
triggering inflammatory responses. (c) OPs cause the inhibition of phospholipase C and decreased
CREB phosphorylation and cAMP levels. Reduced CREB phosphorylation promotes NF-κB acti-
vation and leads to the degradation of IκB, which allows the release of NF-κB and facilitates its
nuclear translocation, where it promotes the transcription of genes involved in pro-inflammatory
immune responses. (d) The OP metabolite (DEDTP) promotes the phosphorylation of SOCS3 and
the dephosphorylation of STAT5 protein, and leads to the activation of p21, resulting in T-cell arrest.
(e) DEDTP also induced the phosphorylation of ERK, JNK, and p38, resulting in the assembly of AP1,
ELK,1, and NFAT, which are the major transcription factors involved in the IL-2 autocrine pathway.

The onset of OP-induced immune disorders will depend on the type of cells affected.
The authors of [86] reported that patients exposed to organophosphates showed the im-
pairment of neutrophil functions (phagocytosis, respiratory burst, adhesion) leading to
recurrent infections, in addition to increased risk of upper respiratory tract infections
(tonsillitis, pharyngitis, and bronchitis). On the other hand, the functional mutilation of
natural killer (NK) cells due to OP intoxication may partly elevate the risk of cancer and
viral infections [87,88]. Deeper effects were observed in the immune system, when the
activities of antigen-presenting cells (APCs), such as dendritic cells (DCs) and macrophages,
were inhibited, given that they play a key role in the elimination of infectious agents
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and the deployment of cell-mediated immunity [44]. The functional impairment of DCs
and macrophages induced by OPs occurs through negative regulation of co-stimulatory
molecules (CD80 and CD86), effector molecules (human leukocyte antigen), MHC expres-
sion, and phenotypic modulation [89–91].

Pesticide-induced immunosuppression is evidently a risk factor for the clinical compli-
cation of inflammatory diseases, especially in occupationally or environmentally exposed
individuals, which occurs in developing countries. In this context, the current knowledge
of molecular mechanisms suggests a direct effect of the exposure to OPs on immunity and
inflammatory processes; however, new experiments with epidemiological approaches are
key to demonstrating the existing correlation of the exposure to toxic substances, such as
OPs, with the degree of susceptibility of organisms to inflammatory diseases.

4. Cytokine-Mediated Modulation of the Inflammatory Process by OP Exposure

The consequences of chronic or early-life exposure to pesticides may be extended
beyond innate immune dysfunction to the increased risk of late-life chronic inflammatory-
based diseases. Immune cells can release a variety of inflammation mediators, activating
pro- and anti-inflammatory processes and regulating intracellular pathways [92].

It is essential to understand the ways in which OPs affect immune cell activities
and, consequently, the function of the immune system, as these substances can induce
alterations in the humoral/cellular mechanisms causing a direct impact on lymphoid
tissues and immune cell function [93]. While previous studies reported that OPs could
affect immunity through different mechanisms [76,94], immune suppression/dysregulation
is a major mechanism by which pesticides exert their immunomodulatory activity, affect
immunocompetence, and consequently increase the host’s susceptibility to diseases and
an array of immune disorders. OPs can affect immunity by interfering with cell signaling
pathways, which could result in changes in cytokine production, surface marker expression,
and cell activation (Table 2) [76,90,93,95–103]. Thus, pro-inflammatory cytokines induce
the initiation of inflammation through interaction with Toll-Like Receptors (TLR), IL-1
receptor (IL-1R), IL-6 receptor (IL-6R), and TNF receptor (TNFR). Receptor activation
modulates intracellular signaling pathways, including those controlled by the Mitogen-
Activated Protein Kinase (MAPK), Nuclear Factor kappa-B (NF-κB), Janus Kinase (JAK)-
Signal Transducer, and the Activator of Transcription (STAT). These transcription factors
promote cytokine expression, modulating a large number of inflammatory genes, such as
IL-1, TNF-α, IL-6, interferons, Transforming Growth Factor (TGF), and chemokines [104].

In this context, it has been shown that exposure to OPs induces the activation of
calcium-mediated p38-MAPK and ERK signaling (Figure 3b), promoting an inflammatory
stage through NF-KB activation and increased levels of pro-inflammatory cytokines such as
TNF-alpha IL-6 [105–107]. Lasram et al. [95] reported that malathion induces the release of
pro-inflammatory cytokines such as IL-1β, IL-6, and INF-γ. These cytokines are responsible
for the activation of nuclear transcription factors such as NF-κB, and are involved in inflam-
mation and the apoptosis of damaged cells. El-Sayed et al. [96] reported that chlorpyrifos
can upregulate the expression of some pro-inflammatory markers such as TNF-α and IL-1β,
besides the activation of NF-κB, which is an important transcription factor that can be found
in the cytoplasm in the form of a dimer of p65 and p50 subunits. Under normal conditions,
NF-κB was found to be bound to the inhibitory protein IκB. However, upon exposure to
stressful conditions (such as environmental contaminants such as OPs), IκB is phosphory-
lated, and is separated from the p65 subunit of NF-κB. Consequently, NF-κB is translocated
into the nucleus to activate the transcription of pro-inflammatory cytokines like TNF-α
and interleukins to instigate inflammatory responses, and consequently to activate the
apoptotic pathway (Figure 3b) [96,97], supporting a critical role for NF-κB in transducing
diverse environmental stimuli to upregulate cytokine expression in inflammatory cells.
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Table 2. Reports of the modulation of the inflammatory process mediated by cytokines due to
exposure to OPs.

OPs Dose Exposure
Time

Effects of
Cytokines

Inflammation
Results Organism Model References

Chlorpyrifos,
dimethoate 0–1000 µM 24 h

IL-10 was
significantly

downregulated

↓ DC-specific cell surface
markers (i.e., CD83 and CD209).

Inhibition of Akt family

DC, differentiated
from the monocyte

cell line THP-1
[90].

Chlorpyrifos 0, 001, 10 µM 24 h ↓ Expression of
IL-1β and TNF-α

Biphasic responses of lysosomal
enzyme activity. inhibition NO

release

Macrophages from
mouse peritoneum [93].

Malathion 200 mg/kg b.w./day 28 days
↑ Expression of
IL-1β, IL-6 and

IFN-γ

↑ Activities of hepatocellular
enzymes in plasma, lipid

peroxidation index,
CD3+/CD4+ and CD3+/CD4+

percent

Adult male Wistar
rats [95].

chlorpyrifos 3.375–13.5 mg/kg 28 days ↑ Expression of
IL-1β and TNF-α

↑ Activation of NF-KB, cleaved
caspase 3 and HO-1 and Nrf-2

pathway
Cellular damage in organs

Male
Wistar rats [96].

Parathion,
chlorpyrifos, and

diazinon
1–100 µM 24 h

↑ Expression of
TNF-α, IL-1β

PDGF
(platelet-derived

growth factor) and
TGF-β

(transforming
growth factor-β).

the of TNF-α
protein.

↑ NF-κB activation and ↓AChE
activity

THP1 cells
differentiated into

macrophages
[97].

Chlorpyrifos 6.75 mg/kg 8 weeks
↑ Expression of IL-6,

TLR-2, IL-1β,
TNF-α, and NLPR3

↑ Expression of apoptotic genes
(Caspase 3, Caspase 9, Caspase 8

and Bax)
Male rats [98].

Triphenyl
phosphate 0, 50, or 150 mg/kg 30 days ↑ Expression of IL-6

and TNF-α

↑ Inflammation in the thalamus
and hippocampus. MAPK
signaling pathways were

significantly affected.

Male mice
(C57/BL6) [99].

Malathion 27 mg/kg (1/50 of
LD50) 30 days

↑ Expression of
IF-γ, IL1-β, TNF-α,

and NFkB

↓ AChE levels in serum (30%)
and liver (25%) compared to the

control group. Lipid
peroxidation.

Rats [100].

Chlorpyrifos 0.3–300 µM 24 h ↑ Expression of
IL-1β and NLRP3

↑ Oxidative stress production
(NO, MDA, and O2·)

BV-2
microglial cells. [101].

Diazinon 10–100 µM 24 h Induce expression
of TNF-α and IL-6

↑ ROS generation. Induced
expressions of COX-2, iNOS,
and cell-surface molecules

CD40, CD86, and MHC class II.
↓phagocytic activity

RAW264.7 cells [102].

Parathion,
Malathion,

paraoxon and
malaoxon

100–2000 µmol/L 24 h
↑ Expression of IL-6,

GM-CSF and
MIP-1α

↓ Viability, intracellular GSH
and phosphorylation of STAT3.
↑ Phosphorylated p38MAPK

Rat
precision-cut lung

slices
[103].

↑ increase ↓ decrease; IL-6: Interleukin 6; IL-2: Interleukin 2; IL-1β: Interleukin 1 beta; TLR-2: Toll-like receptor;
TNF- α: Tumor necrosis factor alpha; NLPR3: NLR family pyrin domain containing 3; IFN-γ: Interferon gamma;
GM-CSF: Granulocyte-macrophage colony-stimulating factor; MIP-1α: Macrophage inflammatory protein; IL-10:
Interleukin 10.

Moreover, it has been shown that exposure to OPs causes phospholipase C inhibition,
as well as decreased CREB phosphorylation and decreased levels of cAMP (Figure 3c)
and mAChR mRNA (M1, M2, M3) [108,109]. CREB phosphorylation is a focal point for
multiple signaling cascades, and is recognized to play a critical role in neuronal develop-
ment, synaptic plasticity, memory function, regeneration, and cell survival in response
to diverse types of stress [110]. The reduced phosphorylation of CREB by exposure to
OPs may contribute to neurobehavioral deficits, and may also affect the transcription
of genes associated with learning, memory, and synaptic plasticity. It has recently been
suggested that the persistence of long-term memories may depend on the activation of the
cAMP/MAPK/CREB transcriptional pathway in the hippocampus [111,112]. CREB also
plays many different roles in immune function by promoting anti-inflammatory immune
responses, such as the inhibition of NF-κB activity, the induction of IL-10, and the genera-
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tion of T-regs [113]. However, reduced CREB phosphorylation induced by OP exposure
promotes NF-κB activation causing a cascade of signaling events that ultimately lead to the
degradation of IκB (Figure 3c), which allows NF-κB release and facilitates NF-κB nuclear
translocation, where it promotes the transcription of genes involved in pro-inflammatory
immune responses [113–115].

Macrophages also play an important role in OP-induced inflammation [103].
Ogasawara et al. [102] showed that OPs not only enhance the production of pro-inflammatory
markers such as IL-6 and TNF-α but also the number of macrophages, and increase the
expression of cyclooxygenase (COX)-2 and inducible nitric oxide synthase enzymes as a
major source of ROS. In this way, oxidative stress can stimulate the expression of inflam-
matory transcription factors, which are crucial regulatory components in the induction of
inflammatory responses [96].

Nevertheless, in the cells, there are a plethora of negative regulators of inflammatory
signaling pathways that operate in a negative feedback fashion (i.e., those pathways which
are inducible by inflammatory signals). These include the suppressor of cytokine signaling
(SOCS) proteins, negative regulators of Janus kinase–signal transducer and activator of
transcription (JAK-STAT) signaling, and A20, a negative regulator of nuclear factor-kB (NF-
kB) signaling [116]. However, this plethora of negative regulators of inflammatory signaling
pathways can also be modulated by OP exposure [117–121]. Esquivel-Sentíes et al. [117]
proposed that the alteration of the function and components of the immune system may
be related to the sequence and intensity of the phosphorylation and dephosphorylation of
protein kinases, an essential mechanism that controls the function of the immune system.
SOCS3 (suppressor of cytokine signaling 3) is a critical molecule in this process, as it
functions as a negative regulator of cytokine signaling. SOCS3 regulates STAT by inhibiting
the phosphorylation of STAT5 affecting cell proliferation [118,119].

Recent reports have shown that metabolites (dialkyl phosphates) generated by the
biotransformation of OPs as diethyl thiophosphate (DETP) and diethyl dithiophosphate
(DEDTP) modify the phosphorylation status of STAT5 (Figure 3d) proteins, and thus pro-
duce several immunomodulatory effects, for instance, the reduction of CD25 and CD4
expression, the reduced secretion of IL2, and the altered signalization of IL-2R [117,120].
Esquivel-Sentíes et al. [117] reported that DEDTP treatment in human T lymphocytes
increases SOCS3 phosphorylation and decreases STAT5 phosphorylation, resulting in the
arrest of T cell proliferation (Figure 3d). On the other hand, Lima et al. [121] reported that
DEDTP can trigger SOCS3-mediated cell cycle arrest that initiates a feedback mechanism
associated with the expression of p21 and p53. DEDTP also induced the phosphory-
lation of ERK, JNK, and p38 [117], which results in the assembly of AP1, ELK,1, and
NFAT, which are the main transcription factors involved in the autocrine IL-2 pathway
(Figure 3e) [117,121,122].

Regarding the cholinergic system, acute OP poisoning induces the overstimulation of
cholinergic receptors due to the accumulation of ACh at immunological synapse, evoking
intracellular Ca2+ signaling, the upregulation of c-fos expression (Figure 3b), and IL-2-
induced signal transduction in T cells and B cells, as well as triggering inflammatory
responses in macrophages [44,55,76]. In contrast, chronic OP poisoning through the down-
regulation of cholinergic receptors may trigger cholinergic anti-inflammatory pathways,
which result in the suppression of T-cell activity, predisposition to cancer, and certain
infections [44,76,82,83].

5. Therapeutic Strategies to Mitigate the Long-Term Inflammatory Effects of Acute
OP Intoxication

The canonical mechanism of the neurotoxicity of OPs is AChE inhibition [123]; thus,
acute AChE inhibition (>60 to 80%) can induce a clinical condition termed cholinergic
crisis [47], which is characterized by peripheral parasympathetic symptoms, the depression
of central breathing control, seizures that can quickly progress to status epilepticus (SE),
and the death of the intoxicated individual [124,125]. The conventional treatment to control



Int. J. Mol. Sci. 2022, 23, 4523 10 of 18

OP-induced cholinergic seizures is based on the use of drugs such as atropine (a peripheral
muscarinic receptor antagonist) [47], pralidoxime (a reactivator of AChE activity) [126]
and benzodiazepine (which reduces seizure activity) [124,127]; however, in severe cases of
OP poisoning, these agents are not effective. Furthermore, OP intoxication can result in
long-term alterations, which are manifested by cognitive dysfunction, affective disorders, or
spontaneous recurrent seizures (SRS) [30,128–132], which are linked to neuroinflammatory
processes [128].

In the neuroinflammatory disorder induced by OPs, microglia cells play a central
role in regulating the production of pro-inflammatory cytokines that eventually damage
neurons and exacerbate the course of neurodegenerative alterations [133]. Therefore,
new pharmacological therapies should focus urgently on the inactivation of microglia
and the inhibition of the inflammatory response. In this regard, it has been shown that
blocking intracellular Ca2+ release, inhibiting NLRP3-inflammasome (NF-κB and MAPK
blockers), and controlling ROS production (NADPH oxidase inhibitors -Nox1, Nox2, and
Nox4) may be important therapeutic targets to counteract the neuronal damage caused by
OPs [47,66,134–139].

6. Lower Vertebrates as a Biomedical Model

Lower vertebrates have become relevant in the field of biomedical research, given that
such vertebrates offer advantages over different study models (e.g., mice). An example of
these are fish, which belong to the phylogenetically oldest group of vertebrates, including
more than half of the vertebrates on the planet; the vast majority of fishes are teleosts
(teleosts, possessing a bony skeleton), and some are highlighted for both their ecological
and economic significance, while other species are widely used as biological models for
genomic studies and developmental biology [65,140]. Furthermore, as these organisms
are the first to present adaptive immune mechanisms, the study of the immune system
in these organisms is of great relevance, as it provides information on the evolution of
the immune system in vertebrates, thus supporting the knowledge of basic aspects of
immunology, and thus the possible treatment of emerging diseases in humans and other
animals. Wilson [141] proposed that teleost fishes can be a good model for translational
research because they possess mechanisms of innate and adaptive immunity (TLR toll-like
receptors, cytokines, complement molecules, B cells, T cells, and immunological memory)
which are very similar to those of higher mammals.

Furthermore, teleost fish have also been used as bioindicators of pollution, as they
can respond to environmental pollution through alterations in physiology or through the
storage of pollutants [142,143]. The use of fish as bioindicators is of great importance
for several reasons, due to their sensitivity to environmental stressors, wide geographic
distribution, presence in the food chain, and ease of adaptation to captivity, which permits
the evaluation of the effect of environmental stressors under controlled conditions [144].
Given this background, our research group has used Nile tilapia (Oreochromis niloticus) and
guppy fish (Poecilia reticulata) as bioindicator organisms and biomedical study models, to
elucidate the mechanism of immunotoxicity by OPs (Table 3).

Initial studies demonstrated that OPs (chlorpyrifos and diazinon) cause immuno-
toxic effects by altering the physiological parameters of leukocytes, such as decreased
phagocytic capacity [145–147], increased respiratory burst [61], and the dysregulation of
IgM concentration and lysozyme activity [61,148], in addition to oxidative damage in
liver and gill proteins [149]. Subsequently—derived from Kawashima and Fujii [55], who
reported that mammalian lymphocytes possessed all of the biochemical and molecular
machinery necessary to synthesize ACh de novo—we were prompted to search for this
cholinergic system in the mononuclear cells of Nile tilapia, demonstrating not only the
presence of the extraneuronal cholinergic system in these cells but also that when the
organisms were exposed to DZN, the activity of AChE was inhibited and the concentration
of ACh increased [23], suggesting that the lymphocyte cholinergic system could be targeted
by OPs in the immunotoxicity phenomenon [43]. Later, in order to elucidate a possible
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mechanism of immunotoxicity by OPS, the effect of DZN and its metabolite oxon (dia-
zoxon) on intracellular Ca2+ flux and pERK1/2, parameters that play a fundamental role
in cell signaling were assessed, in addition to mitochondrial membrane potential (∆Ψm),
ROS, NETs, senescence, and apoptosis, which were determined in Nile tilapia leukocytes,
demonstrating that DZN and its metabolite oxon alter intracellular Ca2+ and pERK1/2
signaling, leading to the depolarization of the mitochondrial membrane by increased ROS,
leading cells to NETosis, senescence and/or death by apoptosis [107,147,150,151]. Likewise,
it was demonstrated that tilapia leukocytes express mAChR (M2, M3, M4, M5A) [152], and
that after exposure to diazoxon, the expression of muscarinic receptors (M3, M4, M5) and
nAChR-β2 decreases [152].

Table 3. Effect of OPs on the molecular and cellular parameters of fishes leukocytes as a study model.

OPs Dose Exposure Time Effects Tissue/Cell Line Organism Model References

Diazinon LC50-7.830 ppm, 1/2
LC50-3.915 ppm 96 h ↓ AChE activity

↑ ACh levels
Spleen

mononuclear cells
Nile tilapia

(O. niloticus) [22].

Diazinon 0.97, 1.95 and
3.91 mg/L 6, 12 and 24 h

↓ AChE activity ↓mAChR,
nAChR concentration and ↑

ACh levels.

Spleen
mononuclear cells

Nile tilapia
(O. niloticus) [23].

Diazoxon 1 nm, 1 µM, and 10
µM 24 h

↓ (M3, M4, M5)
receptors and nAChR-β2

expression.

Spleen
mononuclear cells

Nile tilapia
(O. niloticus) [24].

Diazinon 1.96 mg/L 96 h ↑ Respiratory burst and IgM
concentration

Spleen
mononuclear cells

Nile tilapia
(O. niloticus) [61].

Diazinon 0.97, 1.95 and
3.91 mg/L 6 and 24 h

Alterations in Ca2+ flux and
pERK 1/2.

↑ Cellular senescence
↓mitchondrial membrane.

potential
↑ apoptotic cells.

Spleen
mononuclear cells

Nile tilapia
(O. niloticus) [107].

Chlorpyrifos 0.422 and 0.211 mg/L) 96 h ↓ Phagocytic
Capacity. Peripheral blood Nile tilapia

(O. niloticus) [145].

Diazinon LC50-7.830 ppm 96 h ↓ Phagocytic capacity and
cellular proliferation.

Spleen
mononuclear cells

Nile tilapia
(O. niloticus) [146].

Diazinon 0.97, 1.95 and
3.91 mg/L 6 and 24 h ↑ Reactive oxygen species

↓ Phagocytic activity
Peripheral blood

mononuclear cells
Nile tilapia

(O. niloticus) [147].

Chlorpyrifos 0.051 mg/L 96 h
↓ IgM levels and
deregulation in

lysozyme activity.

Spleen
mononuclear cells

Nile tilapia
(O. niloticus) [148].

Diazinon 0.97, 1.95 and
3.91 mg/L 12 and 24 h ↑ Protein oxidative damage. Liver

and gills
Nile tilapia

(O. niloticus) [149].

Diazinon 0.97, 1.95 and
3.91 mg/L 6 and 24 h

↑ Neutrophil
extracellular traps (NETs)

induction.

Spleen
mononuclear cells

Nile tilapia
(O. niloticus) [150].

Diazoxon 1M 1 h and 2 h

↓ Ca2+ flux against PMA and
ionomycin
stimulation.
↓ ERK1/2

phosphorylation.
↓Mitochondrial membrane

potential.
↑ Apoptotic and cellular

senescence.

Spleen
mononuclear cells

Nile tilapia
(O. niloticus) [151].

Temephos 10 mg/L 7 and 21 days AChE inhibition
↑ ACh levels Smooth muscle Guppy fish (Poecilia

reticulata) [153].

Temephos 10 mg/L 7 days ↓ Phagocytic capacity Spleen
mononuclear cells

Guppy fish (P.
reticulata) [154].

Temephos 10 mg/L 7, 14, and 21
days ↑ Leucocytes death Spleen

mononuclear cells
Guppy fish (P.

reticulata) [155].

↑ increase ↓ decrease; ACh: acetylcholine; AChE: acetylcholinesterase; mAChR: muscarinic acetylcholine receptor;
nAChR: nicotinic acetylcholine receptor; ROS: reactive oxygen species; NETs: neutrophil extracellular traps. IgM:
immunoglobulin M; ERK: extracellular signal-regulated kinase.

On the other hand, guppy fish (P. reticulata) have also been used by our research group
as a model organism to study the toxic effects of these substances used by the Mexican Min-
istry of Health to control vectors that transmit viral diseases such as dengue, chikungunya,
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and Zika. The results of these investigations indicate that exposure (7 and 21 days) in vivo
to temephos (0.5 mg/L), an OP, causes cholinergic alterations (the inhibition of AChE and
the accumulation of the neurotransmitter ACh) in muscle tissue [153]. In addition, it causes
a decrease in phagocytic capacity [154] and a decrease in leukocyte viability, inducing apop-
tosis and necrosis. The data even reveal that temephos induces apoptosis up to 35 days
post-exposure, indicating recovery up to 70 days [155].

At present, our research group is working on the effect of diazinon and its metabolite
oxon on key molecules involved in cell signaling, aiming to elucidate a possible mechanism
of immunotoxicity by these substances. In this sense, we are focusing on the effects of
OPs on the expression of cytokines (anti-inflammatory and pro-inflammatory) and master
transcription factors (T-bet, GATA-3, RORγt, and FOXP3), as well as on the phosphorylation
of JAK/STAT, and levels of cAMP, DAG, and IP3.

7. Conclusions

In conclusion, the present review clearly shows that OPs are substances that, despite
being designed for insect control, affect the physiology of non-target organisms, including
humans. Due to the mechanism of action of OPs, these substances alter the activity of
the cholinergic system, which significantly influences the transcription, synthesis, and
release of inflammatory mediators such as cytokines. Consequently, acute and chronic
exposure to OPs may be related to the development of chronic degenerative pathologies, as
well as allergies or immunosuppression phenomena, alterations in which inflammatory
components play a central role.
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