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Autism spectrum disorders (ASDs) are a group of het-
erogeneous neurodevelopmental disorders with hundreds 
of related genes. Among these, CNTN6 (Contactin-6) has 
recently been associated. Herein, we describe a paternally 
inherited CNTN6 variant predicted in silico to be deleteri-
ous in a patient presenting with language delay, poor social 
interaction, stereotypic behavior, and sensory-motor and 
hearing problems. Additional genomic data by whole-exome 
sequencing (WES) suggest, however, that a concomitant 
pathogenic genetic background would be needed to explain 
the phenotype along with this CNTN6 variant.

Case Report

A 10-year-old male patient was referred due to autistic spec-
trum. His parents were young (25 and 24 years of age) and 
healthy at periconception; no consanguinity was referred and 
there was no other family member affected with neuropsy-
chological anomalies. He was the product of a second gesta-
tion with adequate prenatal care; vaginal delivery occurred 
without incident at the 39th week of gestation. Birth weight 
was 3400 g and height was 51 cm. No congenital anomalies 
were recorded. His psychomotor development was normal 
until age 16 months when he exhibited seizure episodes 
and regression of language. Soon after, he showed aggres-
sive behavior and social retraction, overreaction to noise, 
stereotyped and ritualized activities, and at age 3 years, he 
suffered from deglutition dysfunction and was diagnosed as 
ASD by DSM-IV-TR and ADOS criteria. He was hospital-
ized at age 6 due to intestinal pseudo-obstruction. Later, 
he was evaluated by the Pediatric Neurology Service and 
was treated with risperidone, magnesium valproate, lev-
etiracetam and methylphenidate. At physical examination 
(9.11 years), he presented with a weight, height, and occip-
itofrontal circumference of 26 kg (Z score − 0.2), 139 cm 
(Z score − 2.07), and 50.5 cm (Z score − 2.16), respectively. 
In addition to microcephaly, he only showed some minor 
facial dysmorphia. Muscle strength was 5/5 in all extremi-
ties; fine motor skills and coordination were slightly affected 
whereas ataxic gait was noticed. The Miller–Fisher test was 
positive. A brain MRI showed right frontal pachygyria and 
Sylvian dysplasia. The EEG exhibited irritative subcortical 
activity with slow acute bilateral waves, evoked auditory 
potentials with left hypoacusia for acute tones and delayed 
right central conduction in the inferior portion of the brain-
stem. Newborn metabolic and thyroid function screening 
were normal. A DSM-IV diagnosis of ASD was made based 
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on deficits in social-emotional reciprocity with reduced shar-
ing of interests, emotions or affect and failure to initiate or 
respond to social interactions at age 12 months, a lack of 
facial expressions and nonverbal communication at age 
18 months followed by difficulties to adjust behavior to suit 
various social contexts; difficulties in sharing imaginative 
play or in making friends; stereotyped motor movements 
and use of objects, extreme distress at small changes, dif-
ficulty with transitions, rigid thinking patterns, integrative 
sensorial disorder (adverse response to acute sounds and 
rough textures) and visual fascination with lights or move-
ment since age 2 years.

Since both the GTG-banded (450–550) karyotype and an 
FMR1 CGG repeats screening were normal, we performed 
a genomic scan by WES (Illumina, San Diego, CA, USA) 
to identify single nucleotide variants (SNVs), copy number 
variants (CNVs) and/or structural variants (SVs) potentially 
related to the patient’s phenotype. The BWA Enrichment 
app analysis from this WES demonstrated a high-quality 
Q30 score > 30 for 96.3% of reads, with a mean cover-
age depth of 57.2x; the variants summary revealed 28,843 
SNVs. From these results, we focused on heterozygous and 
homozygous variants with a population frequency < 0.01% 
(global minor allele frequency < 0.01) and predicted to be 
pathogenic, likely pathogenic or a variant of uncertain sig-
nificance (VUS) by the SIFT and PolyPhen-2 (as coupled 
in Variant Interpreter app), Mutation Taster 2, and CADD 
platforms. Thereby, we identified deleterious SNVs in nine 
known and/or potential ASD-risk genes (Table 1) (Mercati 
et al. 2017; Smith 2016; Stessman et al. 2017; Yuen et al. 
2015). Among these, we observed a heterozygous SNV—
with the highest CADD score (48)—in exon 6 of CNTN6 
whose consequence was a gained stop codon (c.566C > A, 
p.Ser189Ter; with genotype quality (GQX) = 99, alterna-
tive variant depth = 41, and total read depth = 94 scores) 
(Fig. 1). This variant was predicted to disrupt CNTN6 in 
the second Ig-like domain and produce a shorter protein 
with a length < 200 amino acids (189/1028). Although this 
SNV was previously reported by 1000 genomes (from the 
dbSNP database, rs773080572), its frequency and valida-
tion is not yet provided, and in other databases, such as 
ExAC, gnomaD, ClinVar, and Exome Variant Server, this 
SNV had not yet been reported; thus we annotated it at the 
ClinVar database (entry SCV000786639.1). Sanger sequenc-
ing confirmed the variant in CNTN6 in the patient but, sur-
prisingly, also evidenced it in his father (Fig. 1). Then, we 
also analyzed the patient’s father DNA by WES. Among 
ASD-risk variants found in the patient, his father only pre-
sented—in addition to the CNTN6 variant—the same variant 
in COL11A1 (Table 1 footnote). No other truncating ASD-
related SNV was observed in the patient’s exome. Strikingly, 
an Enrichment app analysis disclosed an 824-bp inversion 
partially involving the exon 4 of CNTN5 (breakpoints at 

chr11:99,690,484–99,691,307; hg19) in the patient when 
comparing his exome against four reference exome samples 
(including his father). No relevant CNV was found.

Discussion

CNTN6, which encodes the Contactin-6 protein, is highly 
expressed in different brain tissues including the cortex, 
hippocampus, and cerebellum (granule cells and inferior 
colliculus) and has been involved in processes of dendrite 
growth and synapse formation (Mercati et al. 2017). Rarely 
reported (Fig. 1), de novo or inherited loss-of-function SNVs 
in this gene appear to have a central pathogenic role in a few 
ASD patients with sensory-motor and auditory alterations 
(Mercati et al. 2017); yet, as occur with several other ASD-
related hits, its actual clinical impact is often inconsistent. 
Notwithstanding that sensory-motor behaviors and hearing 
problems in the present ASD patient are comparable with 
such findings, the absence of any symptom in his father har-
boring the same truncating variant in CNTN6 is unexpected 
and even contradicts the suggested impact of such mutations 
in ASD (Cheng et al. 2018; van Daalen et al. 2011).

It has been suggested that several mutations in CNTN6 
are not fully penetrant (even some related to deletions), and 
require the presence of concomitant variants—that in some 
cases can be in other contactin-related genes—to cause ASD 
(Mercati et al. 2017; Oguro-Ando et al. 2017; van Daalen 
et al. 2011). In this regard, our search for variants in other 
already reported ASD-risk genes demonstrated, among oth-
ers, likely pathogenic variants in CNTN5, DNAH10, NEO1, 
and NRXN2 in the patient, which were absent in his father 
(Table 1) and in other exome-sequenced healthy and non-
ASD subjects in our lab (n = 15, data not shown). Alike 
CNTN6, CNTN5 has relevant expression patterns and func-
tional roles in the development of sensory-motor neuronal 
pathways; therefore, alterations of this gene may also lead 
to ASD involving sensory-motor and auditory affectations 
(Mercati et al. 2017). Although the pathogenicity of the 
CNTN5 SV found in this patient is not clear (it was previ-
ously described by DGV (dgv705n106/nsv1078300) in at 
least two patients without available neurological data), the 
envisaged damage in exon 4/intron 4 (Suppl. Fig. 1) could 
produce an aberrant protein and add to the truncated CNTN6 
effect. Moreover, DNAH10 encodes for a dynein expressed in 
brain (UniProtKB, ID Q8IVF4). Neuron dyneins participate 
in establishing and maintaining the complex morphology of 
axons and dendrites (Kapitein et al. 2010). Significantly, two 
brothers with ASD inherited from their affected mother both 
a truncating CNTN6 and a VUS in DNAH10 as well (Mercati 
et al. 2017). NEO1 and NRXN2 encode for neuronal cell 
surface proteins; NEO1 has been involved in cell adhesion, 
neural migration, and axon guidance, whereas NRXN2 in 
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cell recognition and adhesion (UniProtKB, ID Q9P2S2; Siu 
et al. 2016; Stessman et al. 2017). Another gene harboring a 
likely pathogenic variant—but not yet reported as ASD-risk 
factor—was DNAH7 (Table 1).

Even though most of the ASD-related genes mentioned 
in this report appear to have incomplete penetrance or a less 
defined association (e.g., Mercati et al. 2017; Yuen et al. 
2015), it is tempting to speculate on the participation of 
more than one of these and perhaps other genes (probably 
not yet related to ASD) (Table 1 and Suppl. Table 1) in the 
pathogenesis of this patient, mainly through subtle additive 
effects in axon and/or dendrite behavior. This is consist-
ent with the functional overlapping of autism-risk genes 
(e.g., those encoding contactins and neurexins) implicated 

in regulating the structural stability of neurons (Lin et al. 
2016).

In summary, we identified a loss-of-function variant in 
CNTN6 related to an ASD phenotype. Although this find-
ing may reinforce the link between CNTN6 mutations and 
ASD with sensory perception alterations, the presence of 
concomitant likely pathogenic variants—including a SV 
affecting another closely related contactin—seems to be 
indispensable to complete the pathogenesis in this, and 
perhaps, other patients. Thus, our findings further support 
the contention that CNTN6-related ASD requires a specific 
genetic (and/or even epigenetic) background to manifest and 
would lead us to the question: Does CNTN6 represent an 
additive or a causative gene? In this regard, further studies of 

Table 1   Additional SNVs found in the present patient (but not in his father) related and/or potentially related to ASD phenotypes

The variant found in COL11A1 (c.652-8_652-6dupTTT) was omitted from this table because of it was present in the patient’s father
S SIFT, P-2 Polyphen-2, MT mutation taster, CADD (PHRED) combined annotation dependent depletion
a https​://gene.sfari​.org/datab​ase/human​-gene/NRXN2​; https​://gene.sfari​.org/datab​ase/human​-gene/SLC45​A1; http://autis​mkb.cbi.pku.edu.cn/
gene_evide​nce_detai​l.php?entre​z_id=4543

Gene/SNV S, P-2, MT, and CADD 
scores

Zygosity in patient ASD-risk 
genes 
(known)

Potential 
ASD-risk 
genes

Present in subjects 
without ASD

References

DNAH10
Missense
c.6117G > C/p.

Met2039Ile

–, 0.815, 10, 26.2 Heterozygous Yes – Not in our samples Yuen et al. (2015)

KMT2C
Missense (all)
c.2573G > T/p.

Trp858Leu
c.2578C > T/p.

Pro860Ser
c.2645T > C/p.

Ile882Thr

–, 0.935, 25.1, 89
–, 0.945,
19.05, 74
–, 1, 61, 26.4

Heterozygous Yes – Yes Stessman et al. (2017)

ANKRD13C
Splice region
c.1216-6delT

– Heterozygous – Yes Yes This report

DNAH7
Missense
c.11720A > G/p.Tyr-

3907Cys

0, 0.975, 10, 28.9 Heterozygous - Yes Not in our samples This report

NEO1
Missense
c.1112C > T/p.

Thr371Ile

0.03, 0.97, 89, 26.9 Heterozygous Yes – Not in our samples Siu et al. (2016)

NRXN2
Missense
c.1975C > T/p.

Arg659Trp

0, 31, 101, 20.9 Heterozygous Yes – Not in our samples SFARI databasea

SLC45A1
Missense
c.2080G > C/p.Val-

694Leu

0.01, 0.095, 32, 23.6 Heterozygous Yes – Not in our samples SFARI databasea

MTNR1A
Missense
c.287G > A/p.Gly96Asp

0, 0.86, 94, 24.4 Heterozygous Yes – Not in our samples AutismKB databasea

https://gene.sfari.org/database/human-gene/NRXN2
https://gene.sfari.org/database/human-gene/SLC45A1
http://autismkb.cbi.pku.edu.cn/gene_evidence_detail.php?entrez_id=4543
http://autismkb.cbi.pku.edu.cn/gene_evidence_detail.php?entrez_id=4543
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those ASD-related variants accompanying likely pathogenic 
CNTN6 variants will be needed.
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