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Abstract In thiswork,we present a system composed
of three identical Duffing oscillators coupled bidirec-
tionally. Starting from a Lagrangian that describes the
system, an integral of motion is obtained by means of
Noether’s theorem. The dynamics of the model is stud-
ied using bifurcation diagrams, Lyapunov exponents,
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time-series analysis, phase spaces, Poincaré sections,
spatiotemporal and integral ofmotion planes. The anal-
ysis focuses on themonostable and bistable cases of the
Duffing oscillator potential, in which a confined move-
ment is guaranteed. In particular, it is observed that the
system shows a chaotic behavior for small values of the
coupling parameter for the bistable case. This is one of
the first articles in the literature in which non-trivial
integrals of motion are obtained for a system of three
Duffing oscillators coupled bidirectionally. It is worth
pointing out that there are some reports in the litera-
ture on integrals of motion for unidirectionally coupled
nonlinear Duffing oscillators, but the study carried out
in this work for bidirectionally coupled systems with
more than two nonlinear Duffing oscillators is certainly
one of the first.

Keywords Bidirectional coupling · Coupled three
Duffing oscillators · Integrals of motion · Chaotic
networks · Nonlinear dynamics
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1 Introduction

The Duffing oscillator (DO) is one of the most
important nonlinear models in mathematical physics,
mechanics and engineering, among other disciplines.
The DO was originally proposed by Georg Duffing
to model the motion of a single degree of freedom
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mechanical systemwith harmonic excitation and a non-
linear restoring force [19]. Moreover, a generalization
of this nonlinear oscillator is found in the form of the
Emden–Fowler equation [70]. Given its characteristic
oscillation and chaotic nature, the DO has a wide appli-
cation in different areas of mathematical physics (see
[27,37] and references therein). In particular, the DO
has been employed in the investigation of dynamical
systems and their bistability [1,22], bifurcation prob-
lems [55] and control theory [53]. More specifically,
in terms of coupled systems, the DO has been stud-
ied in the investigation of coupled chaotic oscillators
with harmonic excitation [43] and the analysis of the
synchronization behavior [8,60].

According to Noether’s theorem, it is clear that an
integral of motion can give information about the sym-
metry properties of a given system, and it is even possi-
ble to obtain stability properties of the solutions with-
out the need to solve equations explicitly [17,40,41]. In
fact, the integrals of motion have potential applications
in nonlinear systems or the study of diseases, such as
tuberculosis or dengue [26]. Moreover, since the dis-
covery of the Ermakov invariant [20,42,46], the search
for integrals of motion has been a common problem in
systems that depend explicitly on time. The physical
interpretation of these integrals is more complex and
is associated with a space-time transformation of the
coordinates of a system, resulting in a transformation of
the energy as discussed in [23,54]. Theworks published
by Ray and Reid show generalizations of the Ermakov
invariant [58,59], and it is also possible to construct
integrals of motion in stochastic systems [12–14,66].
Even in the current topic of investigation in the present
manuscript, some works have been published on inte-
grals of motion for the DO with variable coefficients
[39,68], stochastic noise [67] or higher-order nonlin-
earities [24,48]. The techniques to find the integrals of
motion are essentially based on algebraic arguments
[33,35], Noether’s theorem [25,47] or methods based
on transformation groups [11].

Without any doubt, coupled systems are one of
the cornerstones of control theory [15,16,57]. Various
applications can be found in areas as diverse as elec-
tronics [18], communications [71], robotics [28,61],
biology [52], biophysics [63], etc. In the case of coupled
DOs, several works can be found on resonant effects
[31], exact solutions [44], vibration analysis [45], motif
networks [5,6,29], route to chaos and bifurcation anal-
ysis [6,38,50].

In particular, the investigation of ring-coupling sys-
tems has gained importance since Alan Turing’s sem-
inal article on morphogenesis [65], in view that this
configuration favors phase propagation [21,69]. In that
respect, the work by Keener [34] deserves special
merit. In that article, it is shown that propagation fails
precisely when the coupling is weak. Various conse-
quences are discussed thoroughly therein, especially
in the context of cardiophysiology. Different studies
about rings with both unidirectional and bidirectional
coupling have been carried out with different types
of oscillators in their nodes [2,32,62,72]. In the par-
ticular case of the Duffing oscillator, there are many
works focused primarily on unidirectional coupling
[5,6,9,10,29,30,56,64], even a report on a fractional
extension of this oscillator [4] and a study on rotat-
ing waves [3] have been recently published. How-
ever, information on the dynamics of bidirectional ring-
coupled multiple Duffing oscillators is scarce. In view
of these facts, the aim of this work is to contribute in
the investigation of those complex systems.

On the other hand, to the best of our knowledge,
except for two nonlinear weakly coupled oscillators
[36] and two bidirectionally coupled Duffing oscilla-
tors with constant coefficients [51], there are no articles
in the literature on integrals of motion for three Duff-
ing oscillators coupled bidirectionally. In the present
work, we will consider a system of three Duffing oscil-
lators strongly and bidirectionally coupled. From the
practical point of view, this configuration (also known
as bidirectional three-node motif) plays a fundamental
role in complex networks analysis [7,49]. That is why
the main objective of this article is to propose an inte-
gral of motion for this system of coupled oscillators.

The present manuscript is organized as follows. In
Sect. 2,we recall the basic elements to obtain an integral
of motion in the context of Noether’s theorem, includ-
ing the Lagrangian and the Euler–Lagrange equations.
In Sect. 3, the model and Lagrangian for the DO cou-
pled bidirectionally are proposed, and the correspond-
ing integral of motion is calculated. Dynamics of the
nonlinear system is analyzed by means of spatiotem-
poral and integral of motion planes, bifurcation dia-
grams, Lyapunov exponents, time series, phase spaces
and Poincaré sections in Sect. 4. Finally, we close the
work with a brief conclusion and a summary of the
most important results obtained.
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2 Preliminaries

The present section is devoted to review the formal-
ism based on Noether’s theorem to obtain integrals of
motion for a system with several dependent variables.
This formalism can be consulted in [25]. The starting
point is to propose a group transformation of the form

X = ξ(xi , t)
∂

∂t
+

∑

j

η j (xi , t)
∂

∂x j
. (1)

If the symmetry transformation associated with this
operator keeps the action S = ∫

L(xi , ẋi , t)dt invari-
ant, then the integral of motion corresponding to the
system described by a given Lagrangian L(xi , ẋi , t)
can be obtained.

Suppose next that the space–time variation of the
action is equal to zero. More precisely, assume that

δS = δ

t2∫

t1

L(xi , ẋi , t)dt

=
t2∫

t1

∑

i

(
∂L

∂xi
hi + ∂L

∂ ẋi
ḣi

)
dt + Lδt

∣∣∣∣∣∣

t2

t1

= 0,

(2)

where hi = δxi − ẋiδt . After integrating by parts, we
obtain

t2∫

t1

(
∑

i

[
∂L

∂xi
− d

dt

(
∂L

∂ ẋi

)]
hi

)
dt

+
(

∑

i

∂L

∂ ẋi
hi + Lδt

)∣∣∣∣∣

t2

t1

= 0.

(3)

Each of the terms of the first summation cancels out
since L satisfies the Euler–Lagrange equations. Mean-
while, the remaining terms of Eq. (3) give rise to the
integral of motion associated with the transformation.

If the variation performed is based on the group
transformation (1), then δt = εξ and δxi = εηi , where
ε is infinitesimal. Therefore, the integral of motion is
obtained as

I =
∑

i

[
(ξ ẋi − ηi )

∂L

∂ ẋi

]
− ξL + F, (4)

where the function F = F(xi , t) is derived from
the total derivative added to the non-transformed
Lagrangian.Differentiating (4)with respect to time and
equating to zero, we arrive at the following condition:

ξ
∂L

∂t
+ξ̇L +

∑

i

[
ηi

∂L

∂xi
+ (

η̇i − ẋi ξ̇
) ∂L

∂ ẋi

]

= Ḟ(xi , t). (5)

Here, ξ̇ , η̇i and Ḟ can be written explicitly as

ξ̇ = ∂ξ

∂t
+

∑

i

∂ξ

∂xi
ẋi ,

η̇i = ∂ηi

∂t
+

∑

j

∂ηi

∂x j
ẋ j ,

Ḟ = ∂F

∂t
+

∑

i

∂F

∂xi
ẋi .

(6)

Therefore, if a known Lagrangian L is substituted
in condition (5), then the functions ξ , ηi and F are
obtained. When we substitute those expressions into
Eq. (4), we arrive at the desired integral of motion.

3 Integral of motion

Consider a system of three identical DOs coupled
bidirectionally. Precisely, assume that x1, x2, x3 :
[0,∞) → R have continuous derivatives up to the sec-
ond order, which they satisfy the system of ordinary
differential equations

ẍ1 + Ω2x1 + αx31 + β (x1 − x2) + β (x1 − x3) = 0,

ẍ2 + Ω2x2 + αx32 + β (x2 − x1) + β (x2 − x3) = 0,

ẍ3 + Ω2x3 + αx33 + β (x3 − x1) + β (x3 − x2) = 0,

(7)

whereΩ2,α and the coupling parameter β are real con-
stants. A suitable Lagrangian describing the nonlinear
system (7) is given by

L =
3∑

i=1

[
1

2
ẋi

2 − 1

2

(
2β + Ω2

)
x2i − α

4
x4i

]

+ β (x1x2 + x1x3 + x2x3) .

(8)

It is easy to show that ifwe substitute thisLagrangian
into the Euler–Lagrange equations, then we obtain the
original system (7). Using the methodology described
in the previous section, we will obtain now an inte-
gral of motion corresponding to system (7) using the
proposed Lagrangian. First, substitute the Lagrangian
(8) into condition (5) taking into account the explicit
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Fig. 1 Potential wells corresponding to an uncoupled Duffing oscillator as functions of their parameters, where a Ω2 = 0.25 and
α = −0.5, b Ω2 = 0.25 and α = 0.5, c Ω2 = −0.25 and α = −0.5 and d Ω2 = −0.25 and α = 0.5

(II)(I)

(a)

(b)

Fig. 2 (I) Spatiotemporal and (II) integral of motion planes for a single-well case and b double-well case
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Fig. 3 Local maxima
(green, red) and Lyapunov
exponents (blue, magenta)
of x1 and x2 for (I)
single-well case and (II)
double-well case

(I)

(II)

expressions (6). In such way, we obtain the identity
∂F

∂t
+

∑

i

∂F

∂xi
ẋi

=
∑

i

[
− 1

2
ξ̇ ẋ2i − α

4
ξ̇ x4i − αηi x

3
i − Ω2ηi xi

− 1

2

(
2β + Ω2

)
ξ̇ x2i +

⎛

⎝∂ηi

∂t
+

∑

j

∂ηi

∂x j
ẋ j

⎞

⎠ ẋi

]

+ βξ̇ (x1x2 + x1x3 + x2x3) ,

(9)

where ξ̇ is written explicitly using (6). Taking into
account the linear independence of the coordinates and
their respective velocities, it is easy to show that ηi = 0
and the functions ξ and F must be arbitrary constants.

As conclusion, if we substitute these results into (4),
setting ξ = 1 and F = 0, then the integral of motion is

I =
∑

i

[
1

2
ẋi

2 + 1

2

(
2β + Ω2

)
x2i + α

4
x4i

]

− β (x1x2 + x1x3 + x2x3) .

(10)

It can be checked by direct differentiation that (10) is
an integral of motion. In the following section, we will
show numerical results of the dynamic behavior of the
coupled system (7), for different cases of the potential
form of the DO, using time series, bifurcation diagrams
and phase spaces.
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ecapsesahP)II(seiresemiT)I(

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4 Time series and phase space for single-well case with a β = 0.05, b β = 0.10, c β = 0.15, d β = 0.20, e β = 0.25 and f
β = 0.30
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(III) Poincar´ racnioP)III(noitcese é section

(a) (b)

(c) (d)

(e) (f)

Fig. 5 Poincaré sections for single-well case with a β = 0.05, b β = 0.10, c β = 0.15, d β = 0.20, e β = 0.25 and f β = 0.30

4 Numerical results

In order to show the behavior of the system, we will
firstly review the potential of the simple Duffing oscil-
lator. It is well known that depending on the signs of the
parametersΩ2 and α, there are four possible behaviors
[6]:
(a) If Ω2 > 0 and α < 0, then the potential has a

double-hump well with a local minimum at x = 0
and two maxima at ±√

Ω2/ |α|, as in Fig. 1a.
(b) IfΩ2 > 0 andα > 0, then the potential has a single

well with a local minimum at x = 0, as in Fig. 1b.
(c) IfΩ2 < 0 andα < 0, then the potential has a single

hump with a local maximum at x = 0, as in Fig. 1c.
(d) If Ω2 < 0 and α > 0, then the potential has a

double well with two minima at ±
√∣∣Ω2

∣∣ /α and a
local maximum at x = 0, as in Fig. 1d.

It is clear that the double and simple hump cases do
not present physical interest since the movement will
be unbounded. Therefore, we will focus our attention
on Duffing oscillator systems with double and simple

well, where we will use the critical points ±
√∣∣Ω2

∣∣ /α
as initial conditions. More specifically, we set the fol-
lowing initial data:

x1(0) = x3(0) = −
√

Ω2/α,

x2(0) =
√

Ω2/α,

ẋ1(0) = ẋ2(0) = ẋ3(0) = 0,

(11)

with Ω2 = 0.25 and α = 0.5.
The resulting spatiotemporal for x1 and integral of

motion planes of the system is shown in Fig. 2. In
the first row, we can see the result for the single-well
case where the behavior of x1 is clearly stable as time
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ecapsesahP)II(seiresemiT)I(

(g)

(h)

(i)

(j)

(k)

(l)

Fig. 6 Time series and phase space for single-well case with g β = 0.35, h β = 0.40, i β = 0.45, j β = 0.56, k β = 0.65 and l
β = 0.93
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(III) Poincar´ racnioP)III(noitcese é section

(g) (h)

(i) (j)

(k) (l)

Fig. 7 Poincaré sections for single-well case with g β = 0.35, h β = 0.40, i β = 0.45, j β = 0.56, k β = 0.65 and l β = 0.93

progresses and the value of the coupling constant β

increases (similar results are obtained for x2 and x3).
Also, notice that the integral of motion increases with
β, that is because the integral of motion (10) depends
on the initial conditions (which are fixed), but it also
depends on β, which increases from 0 to 1. The second
row shows the result for the double well (also referred
to as the bistable case). Here, we can see a different
behavior of the oscillators, where a chaotic regime is
presented for low values of parameter β (similar results
are obtained for x2 and x3).

In order to analyze the nonlinear dynamics of the
three-oscillator system, Fig. 3 shows the bifurcation
diagrams and Lyapunov exponents for the simple and
double-well cases. The local maximum values for x1
and x2 are plotted taking the coupling factor β as con-

trol parameter (note that x3 is identical to x1 by symme-
try). Except for the range of amplitudes, the behaviors
of x1 and x2 are similar. This is due to the fact that
the variables are synchronized in phase. In the case of
a simple well, the behavior is quasi-periodic, that is,
there are two main frequencies. However, for low β

values, we find few maxima that gradually increase as
the coupling value increases. (Although for some spe-
cific β values, this number of maxima is considerably
reduced.) The absence of chaotic behavior is confirmed
with values of the Lyapunov exponent close to zero.
For the case of a double well (as already mentioned), a
chaotic behavior occurs at low values of the coupling
parameter.More specifically, the value of the Lyapunov
exponent associated with the oscillator x1 has values
clearly greater than zero when 0 < β < 0.3. This
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ecapsesahP)V(seiresemiT)VI(

(a)
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(c)

(d)

(e)

(f)

Fig. 8 Time series and phase space for double-well case with a β = 0.05, b β = 0.10, c β = 0.15, d β = 0.20, e β = 0.25 and f
β = 0.30
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(VI) Poincar´ racnioP)IV(noitcese é section

(a) (b)

(c) (d)

(e) (f)

Fig. 9 Poincaré sections for double-well case with a β = 0.05, b β = 0.10, c β = 0.15, d β = 0.20, e β = 0.25 and f β = 0.30

behavior can be justified because there is a struggle for
each of the oscillators to go from one well to another
in a non-periodic way. The system gradually becomes
quasi-periodic with few maxima for larger values of
β, which increases as this parameter grows, that is, a
similar behavior to that of the simple well is observed.
This is once again shown by the values of the Lyapunov
exponent close to zero.

To visualize in detail the individual behavior of the
oscillators, Figs. 4, 5, 6, 7, 8, 9, 10, 11 (I,IV) show the
time series, (II, V) show the phase space and (III,VI)
show the Poincaré sections for different values of β

between 0 and 1. These figures show the evolution of
the dynamics in the system. In columns (I–III), which
depict the behavior of the simple-well case, we can see
the periodic, confined and practically exclusive move-

ment between the oscillators x1 and x2. It can also be
seen that for specific values of β = 0.56, 0.93, the
region of motion narrows considerably. We can also
observe that for the values included in the interval
0 < β < 0.5 (see Figs. 4 (I,II) and 6 (I,II)), the variable
x1 remains in a quasi-periodic regime, while variable
x2 goes from quasi-periodic to homoclinic. Later, both
regimes are synchronized in phase causing a similar
behavior but with different amplitude, the period is the
same and the shape of the attractor is similar. In turn,
the Poincaré section shows a closed curve that indicates
a quasi-periodic behavior where two frequencies are
dominant. On the other hand, in columns (IV-VI) (the
double-well case), the chaotic behavior of the oscilla-
tors is evident up to around a coupling parameter value
β = 0.25, where the system roughly becomes periodic
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ecapsesahP)V(seiresemiT)VI(

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 10 Time series, phase space and Poincaré sections for double-well case with a β = 0.05, b β = 0.10, c β = 0.15, d β = 0.20, e
β = 0.25 and f β = 0.30
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(VI) Poincar´ racnioP)IV(noitcese é section

(g) (h)

(i) (j)

(k) (l)

Fig. 11 Poincaré sections for double-well case with g β = 0.35, h β = 0.40, i β = 0.45, j β = 0.56, k β = 0.65 and l β = 0.93

and exclusive between oscillators, in a similar way to
the previous case. Here, we can see that, for the spe-
cific value of β = 0.93, the region of motion narrows.
More specifically, note that in Figs. 8 (II) and 10 (II),
the phase space begins to fill without a clear shape of
the attractor, while the Poincaré section (see Figs. 9
(III) and 11 (III)) shows a non-uniform distribution of
points. When β = 0.30 (see Figs. 8 (I)(f), (II)(f) and
9 (III)(f)), the system changes its behavior and passes
to quasi-periodic and homoclinic states which coexists
for the rest of the values of the coupling constant (see
Fig. 11 (I), (II) and (III)).

5 Conclusion

In this paper, we presented a system composed of three
identical bidirectionally coupled Duffing oscillators.

From a proposed Lagrangian, an integral of motion is
obtained using the formalism of Noether’s theorem. In
order to study the dynamics of this system, we have
shown the space-time and integral of motion planes
in cases where the potential of the Duffing oscilla-
tor confines the motion. By means of bifurcation dia-
grams, Lyapunov exponents, time series, phase space
and Poincaré sections, it was possible to visualize in
detail the periodic and confined behavior of the oscil-
lators and,more specifically, themanifestation of chaos
for small values of the coupling parameter in the case
of the double-well potential. This behavior confirms
the results reported in [34], which may have significant
implications in cardiology studies. We believe that the
knowledge of an integral of motion for the case of a
basic network of three nonlinear oscillators (such as
the Duffing oscillators), where even chaotic behavior
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occurs, may be relevant in understanding complex net-
works where the chaotic behavior is of fundamental
importance today.

Before closing this work, we would like to point
out again that the literature in this area reports almost
exclusively on the investigationof unidirectionally cou-
pled systems of Duffing oscillators. In that context,
some integrals of motion have been derived using var-
ious methodologies. Meanwhile, the study of systems
with systems consisting of two bidirectionally cou-
pled Duffing oscillators has been carried out assum-
ing only the presence of weak couplings. After survey-
ing thoroughly the current state of the art, the authors
have found out that there are no reports on systems
of three strongly coupled Duffing oscillators through
bidirectional couplings. In that sense, the present work
is one of the first successful efforts in the literature,
in which non-trivial integrals of motion have been
obtained for such complex systems. Obviously, one
interesting problem to investigate in the future is to
extend the results from the present manuscript to the
case of a ring consisting of N oscillators (where N ∈ N)
with bidirectional coupling. Evidently, these results
will help in studying the possible phase propagation
and its chaotic behavior.
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