

Not peer-reviewed version

Targets and Effects of Common Biocompounds of *Hibiscus sabdariffa* (Delphinidn-3-Sambubiosidin, Quercetin, and Hibiscus Acid) in Different Pathways of Human Cells According to a Bioinformatic Assay

<u>Sergio Raúl Zúñiga-Hernández</u>^{*}, <u>Trinidad García-Iglesias</u>, Monserrat Macías-Carballo, <u>Alejandro Pérez-Larios</u>, Yanet Karina Gutiérrez-Mercado, Gabriela Camargo-Hernández, <u>Christian Martin Rodríguez-Razón</u>^{*}

Posted Date: 5 December 2023

doi: 10.20944/preprints202312.0162.v1

Keywords: Delphinidin-3-sambubiosid; Quercetin; Hibiscus Acid; Bioinformatics; Hibiscus sabdariffa

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 December 2023

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Targets and Effects of Common Biocompounds of *Hibiscus sabdariffa* (Delphinidn-3-Sambubiosidin, Quercetin, and Hibiscus Acid) in Different Pathways of Human Cells According to a Bioinformatic Assay

Sergio R. Zúñiga-Hernández ^{1,*}, Trinidad García-Iglesias ², Monserrat Macías-Carballo ³, Alejandro Perez-Larios ⁴, Yanet Karina Gutiérrez-Mercado ⁵, Gabriela Camargo-Hernández ⁶ and Christian Martin Rodríguez-Razón ^{7,*}

- ¹ Centro Universitario de los Altos, Universidad de Guadalajara
- ² INICIA Instituto de Investigación de cáncer en la infancia y adolescencia. Departamento de fisiología del CUCS; trinidad.giglesias@academicos.udg.mx
- ³ Instituto de Investigación en Ciencias Médicas, Centro Universitario de los Altos, Universidad de Guadalajara; monserrat.macias@cualtos.udg.mx
- ⁴ Laboratorio de Nanomateriales, Agua y Energia, Departamento de Ingenierias, Division de Ciancias Agropecuarias e Ingenierias, Centro Universitario de los Altos; alarios@cualtos.udg.mx
- ⁵ Laboratorio Biotecnológico de Investigación y Diagnóstico, División de Ciencias Biomédicas, Departamento de Clínicas, CUAltos; yanet.gutierrez@academicos.udg.mx
- ⁶ Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara: gabriela.camargo@academicos.udg.mx
- ⁷ Laboratorio de experimentación animal (Bioterio), Departamento de Ciencias de la Salud, Centro Universitario de los Altos
- * Correspondence: sergio.zuniga@alumnos.udg.mx (S.R.Z.-H.); christian.rrazon@academicos.udg.mx (C.M.R.-R.)

Abstract: The historical and cultural use of food as a remedy for diseases is evident in societies, such as using Hibiscus sabdariffa to address conditions like hypertension and high blood glucose. The natural biocompounds in this plant, including Delphinidin-3-Sambubioside (DS3), Quercetin (QRC), and Hibiscus Acid (HA), have been linked to various health benefits. Despite individual attention, molecular targets for these compounds remain unclear. In this study, in-silico analysis employed bioinformatic tools; including Swiss Target Prediction, ShinnyGo 0.77, KEGG, and Stringdb, to identify molecular targets, pathways, and hub genes. A PubMed literature search complemented the results. DS3 demonstrated potential modifications in genes related to nitrogen and glucose metabolism, inflammation, angiogenesis, and cell proliferation, particularly affecting the PI3K-AKT pathway. QRC displayed interconnected targets across multiple pathways, with overlap with DS3 and a focus on cancer-related pathways. HA showed distinct targets, particularly associated with nervous system-related pathways. These findings highlight the need for targeted research on the molecular effects of DS3, QRC, and HA, providing valuable insights into potential therapeutic pathways.

Keywords: Delphinidin-3-sambubiosid; quercetin; hibiscus acid; bioinformatics; hibiscus sabdariffa

1. Introduction

Hibiscus sabdariffa is a highly popular plant in Asia and America. Therefore, it has been used in a wide array of products ranging from flavored water to facial creams. Its popularity can also be attached to its potential beneficial effects on health, going from hypotensive to anti-cancerogenic, especially since this plant is rich in plenty of biocompounds. The matrix of this plant is rich in quantity of biocompounds, it has anthocyanins, organic acids, and other phenolic compounds, and many of them are quite common in many fruits, vegetables, plants, and especially in Hibiscus *sabdariffa*. They are generally responsible for such foods' characteristics, going from their colors like blue, red, or purple colors (1), to their flavor and odor. As for their potential therapeutic effect, there is substantial

evidence that most if not all can have an effect in different cells of mammals (2) with some of them directly linked to alterations in biological pathways, multiple biological models have shown that anthocyanins are capable of change the way prognosis of several pathologies. One anthocyanin of particular interest is Delphinidn-3-Sambubiosid, found particularly in high quantities in *Hibiscus sabdariffa*. This anthocyanin (DS3) has shown potential therapeutic effects (3), another compound is quercetin (QRC) one of the most researched phenolic compounds that are not anthocyanins, and finally, hibiscus acid (HA) is the most characteristic of this plant and plays an important role in the flavor and therapeutic effects of *Hibiscus sabdariffa* (4,5). However, there is little evidence of how exactly all these biocompounds affect the cells of humans and what targets it has in them. As such, the objective of this study is to use bioinformatic tools to determine what probable targets D3S, QRC, and HA have on human cells as well as to determine the effects could have in such signaling pathways.

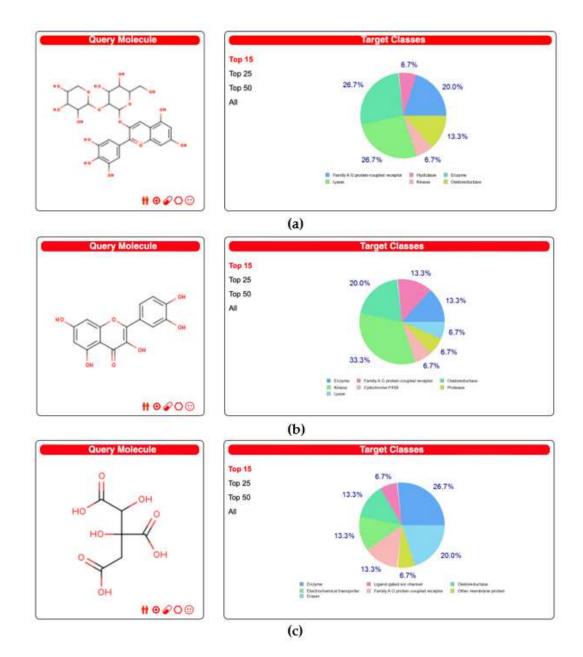
2. Materials and Methods

Bioinformatic analysis

The SwissTargetPrediction site was used to determine possible molecular targets of the interaction of D3S, QRC, and HS. Once the list of possible targets for each of them was obtained, the ShinnyGo 0.77 site was used to obtain the Fold Enrichment (FE) of each one by FDR (cut-off of 0.05). Out of those, the ones with an FE higher than 4 were used in KEGG to identify the pathways where there could be a key interaction caused by those biocompounds. Also, the website Stringdb site was used to obtain a hub of genes gathered from the FE data. From these last ones, evidence was searched using the Pubmed database.

Literature search and data selection

A search was conducted using PubMed to identify relevant articles that have information about the genes obtained from the bioinformatic analysis against D3S, QRC, and HA, these were made with a simple search string "Gene/Protein Name" AND "Biocompound name". The search used terms in titles, abstracts, or a combination of both. Finally, inclusion and exclusion criteria were used to determine which articles could be considered for the final discussion.


Inclusion and Exclusion criteria

The inclusion criteria were: Any study that checks for any of the genes (or protein derived from them) obtained from the bioinformatic analysis with either DS3, QRC and/or HC. As for the exclusion criteria: studies with duplicated or overlapping data, papers that only presented abstracts, conferences, editorials, or author responses, articles without full text available, and systematic reviews.

3. Results

3.1. Data from the Swiss Target Prediction

Figure 1 shows the top 15 target classes of molecules that each biocompound could interact with, for DS3 most of them being enzymes and lyases followed closely by a family of G protein-coupled receptors. QRC most of them belong to oxidoreductase and kinases, and as for HA, most of the targets are enzymes. Also, the full information on all the possible targets is shown in supplementary material 1.

Figure 1. Top 15 molecular targets of the biocompounds according to the Swiss Target Prediction site. a) DS3 Results b) QRC Results c) HA Results.

3.2. Analysis of Gene Ontology and Metabolic Pathways

The site ShinnyGo 0.77 was used to perform the Gene Ontology and KEGG. The full results from the Gene Ontology are shown in Table 1 for DS3, Table 2 for QRC, and Table 3 for HA. The results of KEGG are also shown as images of each pathway with the signaling of the potential changes in the protein are displayed in supplementary material 2.

Enrichme nt FDR	nGenes	Pathwa y Genes	Fold Enrichment	Pathway	Genes
4.20E-18	10	17	141.151703	Nitrogen	CA2 CA9 CA14 CA6 CA1
4.20E-18	10	17		metabolism	CA3 CA4 CA7 CA5A CA13

Table 1. Functional enrichment analysis of the genes that have a prediction of interaction with DS3.

1.49E-09	fifteen	354	10.1677074	PI3K-Akt signaling pathway	GSK3B PIK3CG MET IL2 FLT3 PKN1 KDR IGF1R AKT1 MCL1 PIK3R1 EGFR SYK PTK2 INSR
2.21E-09	9	79	27.3369754	EGFR tyrosine kinase inhibitor resistance	GSK3B MET KDR IGF1R AKT1 PIK3R1 EGFR AXL SRC
2.73E-09	27	1527	4.24287044	Metabolic pathways	CD38 PTGS2 CA12 AKR1B1 HSD17B2 PYGL CA2 SQLE PIK3CG CA9 ALOX12 ALDH2 CA14 GLO1 CA6 CA1 CYP19A1 PDE5A XDH ALOX15 CA3 CA4 CA7 PLA2G1B CA5A CA13 MAOA
1.98E-07	8	95	20.2069806	Endocrine resistance	MMP2 MMP9 IGF1R AKT1 PIK3R1 EGFR PTK2 SRC
3.94E-06	7	108	15.5528265	Insulin resistance	NR1H3 GSK3B PYGL AKT1 PIK3R1 INSR RPS6KA3
4.89E-06	6	70	20.5678196	Central carbon metabolism in cancer	HIF1 A MET FLT3 AKT1 PIK3R1 EGFR
2.28E-05	8	214	8.97038859	Lipid and atherosclerosis	CAMK2B GSK3B MMP9 AKT1 PIK3R1 MMP3 PTK2 SRC
2.52E-05	5	56	21.424812	Regulation of lipolysis in adipocytes	PTGS2 AKT1 PIK3R1 ADORA1 INSR
0.0001554	8	294	6.52946652	MAPK signaling pathway	MET FLT 3 KDR IGF1R AKT1 EGFR INSR RPS6KA3
0.00042661	5	112	10.712406	TNF signaling pathway	PTGS 2 MMP 9 AKT1 PIK3R1 MMP3
0.0008788	5	137	8.7575874	Insulin signaling pathway	GSK3 B PYGL AKT1 PIK3R1 INSR
0.00134156	5	155	7.74057725	Non-alcoholic fatty liver disease	NR1H 3 GSK 3B AKT1 PIK3R1 INSR
0.0024404	3	47	15.3164614	Carbohydrate digestion and absorption	SLC5A1 AKT1 PIK3R1

				AMPK	
0.00373995	4	120	7.99859649	signaling pathway	IGF1R AKT1 PIK3R1 INSR
				Glucagon	
0.01950816	3	107	6.72779144	signaling	CAMK2B PYGL AKT1
				pathway Type II	
0.02834824	2	46	10.432952	diabetes	PIK3R1 INSR
				mellitus	
0.02929805	2	47	10.2109742	Pyruvate metabolism	ALDH2 GLO1

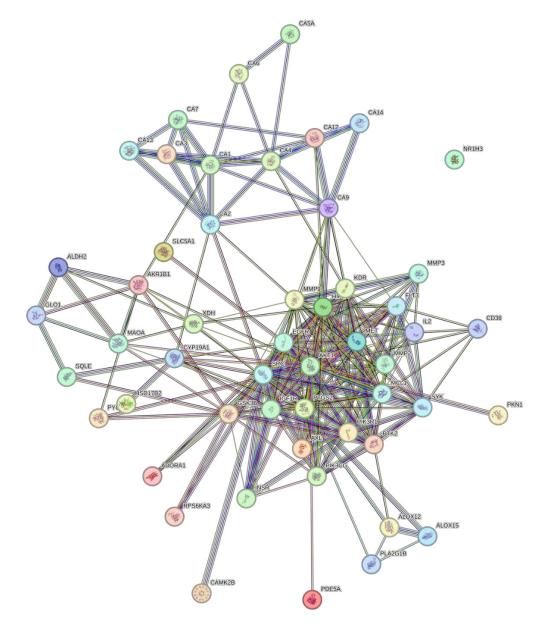
Table 2. Functional enrichment analysis of the genes that have a prediction of interaction with QRC.

Enrich ment	nGe nes	Pathway Genes	Fold Enrichme	Pathway	Genes
FDR			nt		
4.83E-	10	17	138.241358	Nitrogen	CA2 CA9 CA14 CA6 CA1 CA3 CA4 CA7
18				metabolism	CA5A CA13
3.54E-	7	51	32.256317	Ovarian	HSD17B2 HSD17B1 CYP19A1 CYP1B1
08				steroidogenesis	IGF1R INSR AKR1C3
5.91E-				Steroid	HSD17B2 HSD17B1 CYP19A1 CYP1B1
09	8	61	30.8210242	hormone	AKR1C2 AKR1C1 AKR1C3 AKR1C4
				biosynthesis	
				EGFR tyrosine	
1.77E-	9	79	26.7733264	kinase	GSK3B MET KDR IGF1R AKT1 PIK3R1
09	09			inhibitor	EGFR AXL SRC
				resistance	
6.38E-	9	95	22.2641346	Endocrine	MMP2 MMP9 ESR2 IGF1R AKT1
09	-			resistance	PIK3R1 EGFR PTK2 SRC
				Progesterone-	
9.14E-	9	100	21.1509278	mediated	CDK2 CCNB1 IGF1R AKT1 PIK3R1
09	,	100	21.1507270	oocyte	CCNB3 CCNB2 PLK1 CDK1
				maturation	
9.27E-	7	84	19.5841924	ErbB signaling	CAMK2B GSK3B AKT1 PIK3R1 EGFR
07	/	04	17.5041724	pathway	PTK2 SRC
1.38E-	8	97	19.3822935	prostato cancor	GSK3B MMP9 CDK2 IGF1R AKT1
07	0	97	19.3822935 prostate cancer	PIK3R1 EGFR MMP3	
6.03E-	10	131	17 0207102	FoxO signaling	CDK2 CCNB1 IGF1R AKT1 PIK3R1
09	09 ¹⁰	131	17.9397183	pathway	EGFR CCNB3 CCNB2 PLK1 INSR
					NOX4 MET AHR AKR1A1 CYP1B1
4.57E-	14	223	14.7540104	Chemical	AKT1 PIK3R1 EGFR AKR1C2 PTK2
11	11			carcinogenesis	AKR1C1 AKR1C3 SRC AKR1C4

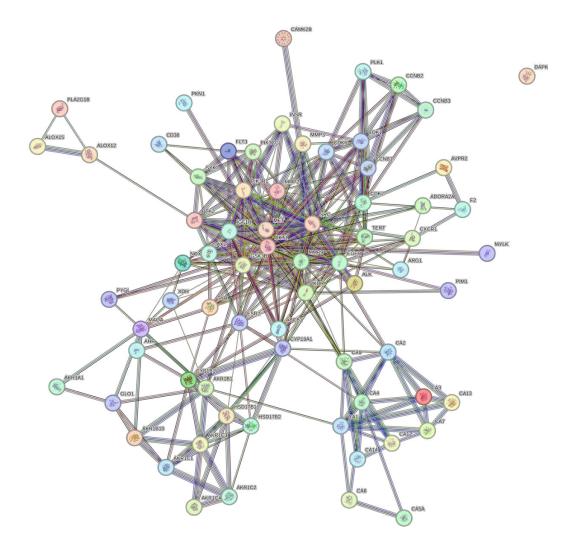
1.98E- 07	9	148	14.2911675	Phospholipase D signaling pathway	PIK3CG AVPR2 AKT1 PIK3R1 EGFR CXCR1 SYK INSR F2
1.98E-	elev	202		Proteoglycans	CAMK2B MMP2 MMP9 MET KDR
08	en	202	12.7975911	in cancer	IGF1R AKT1 PIK3R1 EGFR PTK2 SRC
2.87E-	8	148	12.70326	Gastric cancer	GSK3B ABCB1 MET CDK2 AKT1
06	0	140	12.70320	Gastric cancer	PIK3R1 EGFR TERT
3.85E-	8	156	12.0518107	Cellular	CDK6 CDK2 CCNB1 AKT1 PIK3R1
06	0	150	12.0318107	senescence	CCNB3 CCNB2 CDK1
1.98E-	10	200	11.7505155	Focal adhesion	MYLK GSK3B MET KDR IGF1R AKT1
07	10	200 11.7503	11.7505155	Focal adhesion	PIK3R1 EGFR PTK2 SRC
4.65E-	8	161	11.6775309	MicroRNAs in	ABCB1 MMP9 CDK6 MET PIM1
06	0	101	11.0775509	cancer	CYP1B1 PIK3R1 EGFR
3.35E-	9	210	10.0718704	Rap1 signaling	MET KDR ADORA2A IGF1R AKT1
06	9	210	10.0710704	pathway	PIK3R1 EGFR INSR SRC
1.13E-	fifte			PI3K-Akt	GSK3B CDK6 PIK3CG MET FLT3 PKN1
1.13E- 09		354	9.95806395	signaling	CDK2 KDR IGF1R AKT1 PIK3R1 EGFR
09	en			pathway	SYK PTK2 INSR
					CAMK2B GSK3B MMP2 MMP9 CDK6
4.57E-	19	530	8.42489788	Pathways in	MET FLT3 CDK2 PIM1 ESR2 IGF1R
11	19	550	0.42409700	cancer	AKT1 PIK3R1 EGFR TERT PTK2 ALK F2
					DAPK1
					CD38 CA12 TYR AKR1B1 HSD17B2
8.98E-	31	1527	4.77100169	Metabolic	PYGL CA2 PIK3CG CA9 HSD17B1
12	51	1527	4.77100109	pathways	ALOX12 AKR1A1 CA14 ARG1 GLO1
					CA6 CA1 CYP19A1

Table 3. Functional enrichment analysis of the genes that have a prediction of interaction with HA.

т · 1		Pathw	Fold		
Enrichm ent FDR	nGenes	ay	Enrichm	Pathway	Genes
		Genes	ent		
2.73E-08	6	40	55.15161	Nicotine addiction	GABRG2 GRIA2 GABRB2 GABRA2
2.73E-00	0	40	29	Nicotine addiction	GRIA4 GRIA1
					GRIK5 SLC1A1 SLC1A2 GRM6
1.31E-23	17	114	54.82908	Glutamatergic	GRIA2 GRM4 GRIA4 GRM1 GRIA1
1.51E-25	1.51E-25 17	114	885	synapse	GRIK3 GRM2 GRIK2 GRM5 GRIK1
					GRM8 GRM7 GRM3
0.000306			50.13782	Terpenoid	
	3	22		backbone	HMGCR FNTA FNTB
400	466		991	biosynthesis	
0.005845	2	17	43.25616	Nitrogen	
035	2	17	698	metabolism	CA9 CA1


7
-

9.26E-06	5	61	30.13749	Steroid hormone	HSD11B1 HSD17B3 CYP19A1
			339	biosynthesis	UGT2B7 HSD11B2
8.88E-07	6	75	29.41419	PPAR signaling	CPT1A PPARD FABP3 FABP5
			355	pathway	FABP4 PPARA
0.002418 552	3	49	22.51086 241	Cocaine addiction	GRIA2 GRM2 GRM3
7.85E-09	9	148	22.35876	Phospholipase D	GRM6 PTGFR GRM4 GRM1 GRM2
7.00E-09	9	140	199	signaling pathway	GRM5 GRM8 GRM7 GRM3
					GRIK5 GRM6 GABRG2 GRIA2
	twopty		22.06064	Neuroactive	PTGFR GRM4 PTGER2 GABRB2
2.25E-21	twenty-	350	516	ligand-receptor	GABRA2 GRIA4 GRM1 GRIA1
	one		510	interaction	GRIK3 GRM2 GRIK2 GRM5 GRIK
					GRM8 GRM7 GRM3 ADORA3
0.000324 344	4	67	21.95089 071	Long-term potentiation	GRIA2 GRM1 GRIA1 GRM5
1.27E-07	8	148	19.87445 51	Retrograde endocannabinoid signaling	GABRG2 GRIA2 GABRB2 GABRA GRIA4 GRM1 GRIA1 GRM5
0.004067 259	3	60	18.38387 097	Long-term depression	GRIA2 GRM1 GRIA1
0.005712 018	3	69	15.98597 475	Amphetamine addiction	GRIA2 GRIA4 GRIA1
0.008700 522	3	85	12.97685 009	Taste transduction	GRM4 GABRA2 GRM1
0.009404 411	3	89	12.39362 088	GABAergic synapse	GABRG2 GABRB2 GABRA2
0.009520 584	3	91	12.12123 361	Morphine addiction	GABRG2 GABRB2 GABRA2
0.001753 072	5	197	9.331914 197	Chemical carcinogenesis	VDR CDC25A AR UGT2B7 PPARA
0.002418 552	5	219	8.394461 629	CAMP signaling pathway	GRIA2 PTGER2 GRIA4 GRIA1 PPARA
0.008334	5	306	6.007800 97	Huntington's disease	SLC1A2 GRIA2 GRIA4 GRIA1 GRM
					FOLH1 HAO1 CA9 HMGCR
0.000129	fifteen	1507	3.611762	Metabolic	HSD11B1 HSD17B3 ACLY CA1
008	inteen	1527	469*	pathways	CYP19A1 PGD PTGES G6PD
					UGT2B7 HSD11B2 AKR1B10


*Only value with a FE lower than 4.

3.3. Protein-Protein Interaction Network

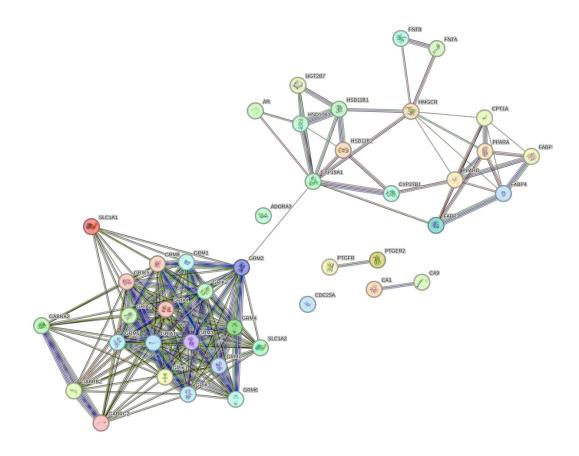

The STRING database was used to predict the associations of protein targets of the three biocompounds. The network was constructed with a medium confidence of 0.400. Figure 2 shows the interactome for DS3 which has 257 edges, 57 nodes, an average node degree of 9.02, and a PPI enrichment p-value of <1.0e-16. Figure 3 shows the interactome for QRC, which has 328 edges, 71 nodes, an average node degree of 9.24, and a PPI enrichment p.value <1.0e-16. Figure 4 shows the interactome for HA. Table 4 shows the hub genes with at least 10 interactions of DS3, Table 5 shows the hub genes with at least 10 interactions of QRC, and Table 6 shows the hub genes with at least 10 interactions of HA.

Figure 2. PPI network of DS3. Each of the edges is a specific protein with a significant protein-protein association. The blue and purple borders are known interactions from plentiful databases (previously curated and experimentally curated). As for the predicted interactions of each neighborhood gene, gene fusion, and gene concurrence are identified as green, red, and navy blue. Other borders such as grass green, black, and gray are text-mining, coexpression, and protein homology respectively.

Figure 3. PPI network of QRC. The colored notes indicate query proteins and the first shell of interactors, as for white nodes those are the second shell of interactors. The edges represent protein-protein associations, the colors indicate the origin of those interactions, sky blue color indicates the information comes from curated databases, purple shows that those have been experimentally determined, green, red, and navy blue indicate predicted interactions, lime green, black and light blue represent associations as text mining, co-expression, and protein homology respectively.

Figure 4. PPI network of HA. The colored notes indicate query proteins and the first shell of interactors, as for white nodes those are the second shell of interactors. The edges represent protein-protein associations, the colors indicate the origin of those interactions, sky blue color indicates the information comes from curated databases, purple shows that those have been experimentally determined, green, red, and navy blue indicate predicted interactions, lime green, black and light blue represent associations as text mining, co-expression, and protein homology respectively.

Gene symbol	Protein name	Protein-Function
	RAC-alpha	Regulates many processes including metabolism,
AKT1	serine/threonine-	proliferation, cell survival, growth, and
	protein kinase	angiogenesis.
PTK2	Focal adhesion Kinase 1	Related to the increase in glucose uptake and glycogen synthesis in insulin-sensitive tissues.
IL2	Interleukin-2	Required for T-cell proliferation and other cells of the immune system
	Phosphoinositide	
	-3-kinase	Necessary for the insulin-stimulated increase in
PIK3R1	regulatory	glucose uptake and glycogen synthesis
	subunit	grucose up une una grycogen synarcois
	alpha/beta/delta	

Table 4. Hub genes with at least 10 interactions in humans were obtained from the predictions of interactions with DS3.

1	1
T	1

SYK	Spleen-associated tyrosine kinase	Regulates biological processes including immunity, cell adhesion, vascular development, and others.
PTGS2	Prostaglandin G/H synthase 2	Plays a role in the production of inflammatory prostaglandins
MMP9	Matrix metalloproteinas e-9	Key in local proteolysis of the extracellular matrix and leukocyte migration
HIF1A	Hypoxia- inducible factor 1-alpha	Master transcriptional regulation in response to hypoxia
	Matrix	Involved in angiogenesis, tissue repair, tumor
MMP2	metalloproteinas	invasion, inflammation, and atherosclerotic plaque
	e-2 (gelatinase a)	rupture
KDR	Vascular endothelial growth factor receptor 2	Essential in the regulation of angiogenesis, promotes the proliferation, survival, and migration of endothelial cells
MET	Hepatocyte growth factor receptor	Regulates processes like proliferation, scattering, morphogenesis, and survival
HGF	Hepatocyte growth factor	Growth factor for a broad spectrum of tissues and cell types
EGFR	Epidermal growth factor receptor	Converts extracellular cues into appropriate cellular responses
IGF1R	Insulin-like growth factor 1 receptor	Involved in cell growth and survival control
CA9	Carbonic anhydrase 9	Involved in pH regulation
DI NIV	B-cell linker	Important for the activation of NF-kappa-B and
BLNK	protein	NFAT

Table 5. Hub genes with at least 10 interactions in humans were obtained from the predictions of interactions with QRC.

Gene symbol	Protein name	Protein-function
ABCB1	ATP-dependent translocase	Translocates drugs and phospholipids
ADCDI		across the membrane.
AHR	Aryl hydrocarbon receptor	Ligand-activated transcriptional activator

		Displays enzymatic activity towards
		endogenous metabolites such as aromatic
	Aldo-keto reductase family 1	and aliphatic aldehydes, ketones,
AKR1A1	member A	monosaccharides and bile acids, with a
		preference for negatively charged
		substrates, such as glucuronate and
		succinic semialdehyde.
		Displays enzymatic activity towards
		endogenous metabolites such as aromatic
	Aldo kato roductoso family 1	and aliphatic aldehydes, ketones,
AKR1B1	Aldo-keto reductase family 1 member B1	monosaccharides and bile acids, with a
	member b1	preference for negatively charged
		substrates, such as glucuronate and
		succinic semialdehyde.
		Catalyzes the NADPH-dependent
	Aldo-keto reductase family 1	reduction of a wide variety of carbonyl-
AKR1B10	member B10	containing compounds to their
		corresponding alcohols.
		Converts progesterone to its inactive
	Aldo-keto reductase family 1	form, 20-alpha-dihydroxyprogesterone
AKR1C1	member C1	(20-alpha-OHP). In the liver and intestine,
		may have a role in the transport of bile
		Works in concert with the 5-alpha/5-beta-
	Aldo-keto reductase family 1 member C2	steroid reductases to convert steroid
AKR1C2		hormones into the 3-alpha/5-alpha and 3-
		alpha/5-beta-tetrahydrosteroids.
		; Catalyzes the conversion of aldehydes
		and ketones to alcohols. Catalyzes the
	Aldo-keto reductase family 1 member C3	reduction of prostaglandin (PG) D2,
AKR1C3		PGH2 and phenanthrenequinone (PQ)
		and the oxidation of 9-alpha,11-beta-PGF2
		to PGD2.
		;Catalyzes the transformation of the
		potent androgen dihydrotestosterone
AKR1C4	Aldo-keto reductase family 1 member C4	
		(DHT) into the less active form, 5-alpha-
		androstan- 3-alpha,17-beta-diol (3-alpha-
		diol).
AKT1		Regulate many processes including
	RAC-alpha serine/threonine-	metabolism, proliferation, cell survival,
	protein kinase	growth and angiogenesis. This is
		mediated through serine and/or threonine

1	2
1	

		phosphorylation of a range of
		downstream substrates.
		Important role in the genesis and
		differentiation of the nervous system.
ALK	ALK tyrosine kinase receptor	Transduces signals from ligands at the
		cell surface, through specific activation of
		the mitogen-activated protein kinase
		(MAPK) pathway.
		Mainly converts arachidonic acid to (12S)-
		hydroperoxyeicosatetraenoic acid/(12S)-
ALOX12	Arachidonate 12-lipoxygenase	HPETE but can also metabolize linoleic
ALOAIZ	12S-type	acid. In contrast does not react towards
		methyl esters of linoleic and arachidonic
		acids (By similarity).
		; Non-heme iron-containing dioxygenase
		that catalyzes the stereo-specific
ALOX15	Arachidonate 15-lipoxygenase	peroxidation of free and esterified
		polyunsaturated fatty acids generating a
		spectrum of bioactive lipid mediators.
		Receptor tyrosine kinase that transduces
		signals from the extracellular matrix into
		the cytoplasm by binding growth factor
AXL	Tyrosine-protein kinase UFO	GAS6 and which is thus regulating many
	receptor	physiological processes including cell
		survival, cell proliferation, migration and
		differentiation.
CA1	Carbonic anhydrase 1	Reversible hydration of carbon dioxide
CA12	Carbonic anhydrase 12	Reversible hydration of carbon dioxide
CA13	Carbonic anhydrase 13	Reversible hydration of carbon dioxide
CA14	Carbonic anhydrase 14	Reversible hydration of carbon dioxide
		Essential for bone resorption and
CA2	Carbonic anhydrase 2	osteoclast differentiation. Reversible
		hydration of carbon dioxide.
CA3	Carbonic anhydrase 3	Reversible hydration of carbon dioxide
CA4	Carbonic anhydrase 4	Reversible hydration of carbon dioxide
CA7	Carbonic anhydrase 7	Reversible hydration of carbon dioxide
CA9	Carbonic anhydrase 9	Reversible hydration of carbon dioxide
	Calcium/calmodulin-	Calcium/calmodulin-dependent protein
CAMK2B	dependent protein kinase	kinase that functions autonomously after
	type II subunit beta	Ca(2+)/calmodulin-binding and

		autophosphorylation, ansport in skeletal
		muscle.
CCNB1	G2/mitotic-specific cyclin-B1	Essential for the control of the cell cycle at the G2/M (mitosis) transition
		Essential for the control of the cell cycle at
CCNB2	G2/mitotic-specific cyclin-B2	the G2/M (mitosis) transition
		Plays an essential role in the control of the
		cell cycle, notably via their destruction
CCNB3	G2/mitotic-specific cyclin-B3	during cell division. Its tissue specificity
		suggest that it may be required during
		early meiotic prophase I.
		Cyclin-dependent kinase 1; Plays a key
		role in the control of the eukaryotic cell
		cycle by modulating the centrosome cycle
CDV1		as well as mitotic onset; promotes G2-M
CDK1	Cyclin dependent kinase 1	transition, and regulates G1 progress and
		G1-S transition via association with
		multiple interphase cyclins. Required in
		higher cells for entry into S-phase and
		mitosis. Q
		Cyclin-dependent kinase 2;
CDK2	Cyclin dependent kinase 2	Serine/threonine-protein kinase involved
		in the control of the cell cycle; essential for
		meiosis, but dispensable for mitosis.
		Cyclin-dependent kinase 6;
CDK6	Cyclin dependent kinase 6	Serine/threonine-protein kinase involved in the control of the cell cycle and
		differentiation; promotes G1/S transition.
	CXC chemokine receptor type	Receptor to interleukin-8, which is a
CXCR1	1;	powerful neutrophils chemotactic factor.
	-,	A cytochrome P450 monooxygenase that
		catalyzes the conversion of C19
		androgens, androst-4-ene-3,17-dione
CYP19A1	Aromatase	(androstenedione) and testosterone to the
		C18 estrogens, estrone and estradiol,
		respectively.
		A cytochrome P450 monooxygenase
	Cytochrome P450 1B1	involved in the metabolism of various
CYP1B1		endogenous substrates, including fatty
		acids, steroid hormones and vitamins.
		,

1	5
1	LU

		Calcium/calmodulin-dependent
DAPK1	Death-associated protein	serine/threonine kinase involved in
	kinase 1	multiple cellular signaling pathways that
		trigger cell survival, apoptosis, and
		autophagy.
		Receptor tyrosine kinase binding ligands
EGFR	Epidermal growth factor	of the EGF family and activating several
2011	receptor	signaling cascades to convert extracellular
		cues into appropriate cellular responses.
		Nuclear hormone receptor. Binds
		estrogens with an affinity similar to that
ESR2	Estrogen receptor beta	of ESR1, and activates expression of
LORZ	Estrogen receptor beta	reporter genes containing estrogen
		response elements (ERE) in an estrogen-
		dependent manner.
		Tyrosine-protein kinase that acts as cell-
	Receptor-type tyrosine-	surface receptor for the cytokine FLT3LG
FLT3	protein kinase FLT3	and regulates differentiation, proliferation
	protent killase rE15	and survival of hematopoietic progenitor
		cells and of dendritic cells.
		Involved in the regulation of TNF-
GLO1	Lactoylglutathione lyase	induced transcriptional activity of NF-
		kappa-B.
	Glycogen synthase kinase-3	Constitutively active protein kinase that
GSK3B	beta	acts as a negative regulator in the
	Dela	hormonal control of glucose homeostasis,
	Estradial 17 hota	Estradiol 17-beta-dehydrogenase 1;
HSD17B1	Estradiol 17-beta-	Favors the reduction of estrogens and
	dehydrogenase 1	androgens.
		Estradiol 17-beta-dehydrogenase 2;
HSD17B2	Estradiol 17-beta-	Capable of catalyzing the interconversion
11301702	dehydrogenase 2	of testosterone and androstenedione, as
		well as estradiol and estrone.
		Receptor tyrosine kinase which mediates
	Inculin like growth factor 1	actions of insulin-like growth factor 1
IGF1R	Insulin-like growth factor 1	(IGF1). Binds IGF1 with high affinity and
	receptor alpha chain	IGF2 and insulin (INS) with a lower
		affinity.
		Receptor tyrosine kinase which mediates
INSR	Insulin receptor subunit alpha	the pleiotropic actions of insulin. Binding
		of insulin leads to phosphorylation of
		······································

_

а.		
т	6	
т	U.	

		several intracellular substrates, including,
		insulin receptor substrates (IRS1, 2, 3, 4),
		SHC, GAB1, CBL and other signaling
		intermediates.
		Tyrosine-protein kinase that acts as a cell-
		surface receptor for VEGFA, VEGFC and
KDD	Vascular endothelial growth	VEGFD. Plays an essential role in the
KDR	factor receptor 2	regulation of angiogenesis, vascular
		development, vascular permeability, and
		embryonic hematopoiesis.
		Catalyzes the oxidative deamination of
		biogenic and xenobiotic amines and has
	Amine oxidase [flavin-	important functions in the metabolism of
MAOA	containing] A	neuroactive and vasoactive amines in the
		central nervous system and peripheral
		tissues.
		Receptor tyrosine kinase that transduces
	Hepatocyte growth factor	signals from the extracellular matrix into
MET	receptor	the cytoplasm by binding to hepatocyte
		growth factor/HGF ligand.
		Ubiquitinous metalloproteinase that is
		involved in diverse functions such as
		remodeling of the vasculature,
MMP2	72 kDa type IV collagenase	angiogenesis, tissue repair, tumor
		invasion, inflammation, and
		atherosclerotic plaque rupture.
		Can degrade fibronectin, laminin, gelatins
		of type I, III, IV, and V; collagens III, IV,
MMP3	Stromelysin-1	X, and IX, and cartilage proteoglycans.
		Activates procollagenase
		May play an essential role in local
MMP9	67 kDa matrix	proteolysis of the extracellular matrix and
	metalloproteinase-9	in leukocyte migration. Could play a role
		in bone osteoclastic resorption.
		Constitutive NADPH oxidase which
		generates superoxide intracellularly upon
NOX4	NADPH oxidase 4	formation of a complex with
		CYBA/p22phox. Regulates signaling
		cascades probably through phosphatases
		inhibition.

1	7
T	1

PIK3CG	Phosphatidylinositol 4,5- bisphosphate 3-kinase catalytic subunit gamma isoform;	Phosphoinositide-3-kinase (PI3K) that phosphorylates PtdIns(4,5)P2 (Phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5- trisphosphate (PIP3).
PIK3R1	Phosphatidylinositol 3-kinase regulatory subunit alpha	Necessary for the insulin-stimulated increase in glucose uptake and glycogen synthesis in insulin-sensitive tissues.
PLA2G1B	Phospholipase A2	PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn- phosphoglycerides, this releases glycerophospholipids and arachidonic acid that serve as the precursors of signal molecules.
PLK1	Serine/threonine-protein kinase PLK1	Serine/threonine-protein kinase that performs several important functions throughout M phase of the cell cycle, including the regulation of centrosome maturation and spindle assembly, the removal of cohesins from chromosome arms, the inactivation of anaphase- promoting complex/cyclosome (APC/C) inhibitors, and the regulation of mitotic exit and cytokinesis.
PTK2	Focal adhesion kinase 1	Non-receptor protein-tyrosine kinase that plays an essential role in regulating cell migration, adhesion, spreading, reorganization of the actin cytoskeleton, formation and disassembly of focal adhesions and cell protrusions, cell cycle progression, cell proliferation and apoptosis.
PYGL	Glycogen phosphorylase, liver form	Phosphorylase is an important allosteric enzyme in carbohydrate metabolism. Non-receptor protein tyrosine kinase
CRS	Proto-oncogene tyrosine- protein kinase Src	which is activated following engagement of many different classes of cellular receptors including immune response receptors, integrins and other adhesion receptors, receptor protein tyrosine

kinases, G protein-coupled receptors as well as cytokine receptors.

		Non-receptor tyrosine kinase which
		mediates signal transduction downstream
		of a variety of transmembrane receptors
		including classical immunoreceptors like
SYK	Tyrosine-protein kinase SYK	the B-cell receptor (BCR). Regulates
		several biological processes including
		innate and adaptive immunity, cell
		adhesion, osteoclast maturation, platelet
		activation and vascular development.
		Telomerase is a ribonucleoprotein
		enzyme essential for the replication of
TERT	Telomerase reverse	chromosome termini in most eukaryotes.
IENI	transcriptase	Active in progenitor and cancer cells.
		Inactive, or very low activity, in normal
		somatic cells.
		This is a copper-containing oxidase that
TYR		functions in the formation of pigments
		such as melanins and other polyphenolic
	Tyrosinase	compounds. Catalyzes the initial and rate
		limiting step in the cascade of reactions
		leading to melanin production from
		tyrosine. Yo

Table 6. Hub genes with at least 10 interactions in humans were obtained from the predictions of interactions with HA.

Gene symbol	Protein	Protein-Function
CPT1A	Carnitine O- palmitoyltransferase 1, liver isoform	Catalyzes the transfer of the acyl group of long-chain fatty acid-CoA conjugates onto carnitine, an essential step for the mitochondrial uptake of long-chain fatty acids and their subsequent beta-oxidation in the mitochondrion.
CYP19A1	Aromatase	A cytochrome P450 monooxygenase that catalyzes the conversion of C19 androgens, androst-4-ene-3,17-dione (androstenedione) and testosterone to the C18 estrogens, estrone and estradiol, respectively.

	25-hydroxyvitamin D-1	A cytochrome P450 monooxygenase involved in vitamin
CYP27B1	alpha hydroxylase,	D metabolism and in calcium and phosphorus
	mitochondrial	homeostasis.
FABP3	Fatty acid-binding protein, heart	FABP are thought to play a role in the intracellular transport of long-chain fatty acids and their acyl-CoA esters
		Lipid transport protein in adipocytes. Binds both long
FABP4	Fatty acid-binding protein, adipocyte	chain fatty acids and retinoic acid. Delivers long-chain fatty acids and retinoic acid to their cognate receptors in the nucleus. Belongs to the calycin superfamily. Fatty-acid binding protein (FABP) family. (132 years)
FABP5	Fatty acid-binding protein 5	Intracellular carrier for long-chain fatty acids and related active lipids, such as the endocannabinoid, that regulates the metabolism and actions of the ligands they bind. In addition to the cytosolic transport, it selectively delivers specific fatty acids from the cytosol to the nucleus, wherein they activate nuclear receptors.
GABRA2	Gamma-aminobutyric acid receptor subunit alpha-2	Ligand-gated chloride channel which is a component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the brain (By similarity). Plays an important role in the formation of functional inhibitory GABAergic synapses in addition to mediating synaptic inhibition as a GABA-gated ion channel (By similarity).
GABRB2	Gamma-aminobutyric acid receptor subunit beta-2	Ligand-gated chloride channel which is a component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the brain. Plays an important role in the formation of functional inhibitory GABAergic synapses in addition to mediating synaptic inhibition as a GABA-gated ion channel.
GABRG2	Gamma-aminobutyric acid receptor subunit gamma-2	Ligand-gated chloride channel which is a component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the brain. Plays an important role in the formation of functional inhibitory GABAergic synapses in addition to mediating synaptic inhibition as a GABA-gated ion channel.
GRIA1	Glutamate receptor 1	Ionotropic glutamate receptor. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system.

GRIA2	Glutamate receptor 2	Receptor for glutamate that functions as ligand-gated ion channel in the central nervous system and plays an important role in excitatory synaptic transmission. L- glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system.
GRIA4	Glutamate receptor 4	Receptor for glutamate that functions as ligand-gated ion channel in the central nervous system and plays an important role in excitatory synaptic transmission. L- glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system.
GRIK1	Glutamate ionotropic receptor, kainate 1	Ionotropic glutamate receptor. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. b
GRIK2	Glutamate ionotropic receptor, kainate 2	Ionotropic glutamate receptor. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system.
GRIK3	Glutamate ionotropic receptor, kainate 3	Receptor for glutamate that functions as ligand-gated ior channel in the central nervous system and plays an important role in excitatory synaptic transmission.
GRIK5	Ionotropic receptor glutamate, kainate 5	Receptor for glutamate. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system.
GRM1	Metabotropic glutamate receptor 1	G-protein coupled receptor for glutamate.
GRM2	Metabotropic glutamate receptor 2	G-protein coupled receptor for glutamate.
GRM3	Metabotropic glutamate receptor 3	G-protein coupled receptor for glutamate.
GRM4	Metabotropic glutamate receptor 4	G-protein coupled receptor for glutamate.
GRM5	Metabotropic glutamate receptor 5	G-protein coupled receptor for glutamate.
GRM6	Metabotropic glutamate receptor 6	G-protein coupled receptor for glutamate.
GRM7	Metabotropic glutamate receptor 7	G-protein coupled receptor for glutamate.
GRM8	Metabotropic glutamate receptor 8	G-protein coupled receptor for glutamate.

Transmembrane glycoprotein that is the rate-limiting 3-hydroxy-3enzyme in cholesterol biosynthesis as well as in the HMGCR methylglutarylbiosynthesis of nonsterol isoprenoids that are essential for coenzyme A reductase normal cell function including ubiquinone and geranylgeranyl proteins. Catalyzes reversibly the conversion of cortisol to the Corticosteroid 11-betainactive metabolite cortisone. Catalyzes reversibly the HSD11B1 dehydrogenase conversion of 7-ketocholesterol to 7-betaisozyme 1 hydroxycholesterol. Corticosteroid 11-beta-Catalyzes the conversion of cortisol to the inactive HSD11B2 dehydrogenase metabolite cortisone. isozyme 2 Testosterone 17-beta-HSD17B3 Favors the reduction of androstenedione to testosterone. dehydrogenase 3 Ligand-activated transcription factor. Key regulator of Peroxisome lipid metabolism. Activated by the endogenous ligand 1-**PPARA** proliferator-activated palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine receptor alpha (16:0/18:1-GPC). Activated by oleylethanolamide, a naturally occurring lipid that regulates satiety. Peroxisome Ligand-activated transcription factor. Receptor that binds PPARD peroxisome proliferators such as hypolipidemic drugs proliferator-activated receptor delta and fatty acids. Sodium-dependent, high-affinity amino acid transporter Excitatory amino acid SLC1A1 that mediates the uptake of L-glutamate and also Ltransporter 3 aspartate and D-aspartate. Sodium-dependent, high-affinity amino acid transporter Excitatory amino acid SLC1A2 that mediates the uptake of L-glutamate and also Ltransporter 2 aspartate and D-aspartate. Testosterone 17-beta-HSD17B3 Favors the reduction of androstenedione to testosterone. dehydrogenase 3 Peroxisome Ligand-activated transcription factor. Key regulator of PPARA proliferator-activated lipid metabolism. receptor alpha Ligand-activated transcription factor. Receptor that binds Peroxisome peroxisome proliferators such as hypolipidemic drugs PPARD proliferator-activated and fatty acids. Has a preference for poly-unsaturated fatty acids, such as gamma-linoleic acid and receptor delta eicosapentaenoic acid. Sodium-dependent, high-affinity amino acid transporter Excitatory amino acid SLC1A1 that mediates the uptake of L-glutamate and also Ltransporter 3 aspartate and D-aspartate.

-	-
7	7
_	

SLC1A2	Excitatory amino acid transporter 2	Sodium-dependent, high-affinity amino acid transporter	
		that mediates the uptake of L-glutamate and also L- aspartate and D-aspartate.	
		L L	

3.4. Data recollection from the evidence of the hub genes with the biocompounds

The results from the search in the PubMed database results from the articles of the hub genes when tested in a study with DS3 and QRC are shown in Table 7 and Table 8, respectively. As for HA, no information about its relationship with any of the hub genes was found at the date of data collection. These results are presented separately if the evidence is found at RNA, protein, or pathways level directly.

Genes	Results at the gene	Deculto at the protein lovel	Results of
Genes	expression level	Results at the protein level	pathway impact
		Deeba N. 2008 (6): Suppress	
MET		the phosphorylation of the	
		protein	
		Teller et al, 2009 (7):	
IGF1R		Inhibition of its kinase	
		activity	
			Harish Chandra
	Harish Chandra Pal(8), et al,	Fridrich D, Et all, 2008 (4):	Pal, et al, 2013 (8):
EGFR	2013: Reduction in the	Suppress phosphorylation of	Inhibition of the
	expression of the gene	the protein.	PI3K-Akt
			pathway

Table 7. Evidence found of the Hub genes when tested against DS3.

*The hub genes that are not shown had no relevant information (if any) for this study in the PubMed database at the date of collection of the data.

Gen es	Results at the gene expression level	Results at the protein level	Results of pathway impact
			Ciolino H, 1999(10): Generates
AH		Mohammadi-Bardbori (9), 2012:	changes in the pathway for
R			Chemical carcinogenesis.
K		reduces protein activation	Hamidullah , 2015: Changes in
			the Akt- mTor pathway
AK		Skarydová et al, 2014(11):	
1RC		Inhibition of the activity of the	
3		enzyme	
CD		Chou, et al, 2010 (12): Decreased	
K2		levels of the protein	

Table 8. Evidence found of the Hub genes when tested against QRC.

22
23

	Mohd et al, 2020	
CD	(13): Decreases the	Teler et al, 2009 (4): Inhibition of
K6	expression of the	its kinase activity
	gene.	
CY	Mense S, 2008 (14):	Mense S, 2008 (14): Increase in
P1B	Increase in RNA	levels of the protein in epithelial
1	transcription	cells
		Yiqi et al, 2022 (15): Decreases the
		phosphorylation of the
EGF		protein/receptor
R		Huang Y, 1999: Decreses the
		phosphorylation of the
		protein/receptor
GS		Chen K, et al, 2018(16): Decrease
K3B		in the phosphorylation, promotes
		the activity of the protein
IGF		Wei-Jen, 2021(17): Reduces the
1R		phosphorylation of the protein
		F
		Yauhen, 2014(18): The activity of
		the protein is decreased, it is
MA		probable that quercetin inhibits
OA		the protein, there is no decrease in
		the levels of protein
	Hui et al, 2015 (19):	
ME	Reduction on the	Hui et al, 2015 (19) Reduced
Т	transcription of the	phosphorylation of the protein.
	gene	
DIV		Haitao et al, 2021(20): Inhibits the
PIK 2P1		function of the protein (is this
3R1		protein level

*The hub genes that are not shown had no relevant information (if any) for this study in the PubMed database at the date of collection of the data.

4. Discussion

The results of the SwissTargetPrediction software (Figure 1) have their bases in the mathematical foundation of SwissTargetPrediction which assesses targets of molecular binding by comparing the molecules to others like them in a 2-way analysis (21), it (SwissTargetPrediction) makes a physical

5D analysis of the molecules (3 dimensions being the spatial dimensions and the other 2 being the atomic charge and the lipophilicity respectively) and also makes a chemical comparison by Tanimoto Index . It is important to remark on how SwissTargetPrediction has been used in the determination of molecular targets of small molecules that come from plants or foods (not dissimilar to the one in this study). For example, in a study of 2022, a team of researchers from China led by Lili Yan (22) looked at Erianin (a biphenyl compound) information regarding its predicted molecular targets on this site, then, they compared the matches of those targets (along with the results of other bio-informatic tools) with then-current information published by other authors getting plenty of overlap in their results. This shows how this tool (SwissTargetPrediction) has been used to successfully find information regarding molecular target information.

In Table 1 the results from the Gene Ontology assay shows (23) that DS3 affected several processes involving metabolism and inflammation, in particular nitrogen metabolism, insulin resistance signaling, PI3k-Akt pathway, metabolic pathways, insulin signaling pathway, regulation of lipolysis, TNF signaling pathway, lipid and atherosclerosis, and endocrine resistance. As for Table 2, the Gene Ontology Assay shows that QRC affected other processes, while it also included metabolism and inflammation, it had plenty of differences, those are: Nitrogen metabolism, Ovarian steroidogenesis, Steroid hormone biosynthesis, EGFR tyrosine kinase inhibitor resistance, Endocrine resistance, Progesterone-mediated oocyte maturation, ErbB signaling pathway, Prostate cancer, FoxO signaling pathway, Chemical carcinogenesis, Phospholipase D signaling pathway, Proteoglycans in cancer, Gastric cancer, Cellular senescence, Focal adhesion, MicroRNAs in cancer, Rap1 signaling pathway, PI3K- Akt signaling pathway, Pathways in cancer, and Metabolic pathways. Finally, the Gene Ontology assay of HA, had interesting results, while some of them are similar to the ones in DS3 and QRC, it has different pathways not present in any of the previous compounds, most intriguing many of them are related to the nervous system somehow, all of the pathways are as follows: Nicotine addiction, Glutamatergic synapse, Terpenoid backbone biosynthesis, Nitrogen metabolism, Steroid hormone biosynthesis, PPAR signaling pathway, Cocaine addiction, Phospholipase D signaling pathway, Neuroactive ligand-receptor interaction, Long-term potentiation, Retrograde endocannabinoid signaling, Long-term depression, Amphetamine addiction, Taste transduction, GABAergic synapse, Morphine addiction, Chemical carcinogenesis, cAMP signaling pathway, Huntington disease, Metabolic pathways. These results are supported by the foundation of the database, the use of the FE of each one by FDR (cut-off of 0.05) has been widely accepted as a tool in bioinformatics to delimit the possibility of false positives (27). These processes are related to a significant number of the effects described for DS3, QRC, or HA (2,3).

Regarding the KEGG analysis on the pathways affected, Table 1 (DS3) indicates, a dysregulation in the metabolism of nitrogen (key in the regulation of energy metabolism and protein metabolism) and glucose metabolism (especially in muscle and adipose tissue). Interestingly, as for the glucose metabolism alterations seem to be attached mostly to alterations in the PI3K-Akt pathway, this result agrees with multiple studies that have studied the effects of DS3 in PI3K-AKT (21-24) For QRC, Table 2 suggests various possible pathways and there's information that indicates such predictions could be the cause of some reported effects, for example, Vaez et al, gave seventy-two women with polycystic ovary syndrome 500 mg of QRC, here they found that the serum levels of LH hormone, FSH hormone, and IL-6 (24), the authors then conclude that QRC can decrease inflammatory and LH parameters. Results such as these also suggest that QRC has some implications for ovarian steroidogenesis just like the bioinformatic test predicts but also it could be explained by the potential effect that QRC has on the PI3K-Akt pathway. Furthermore, QRC has been shown to affect nutrient metabolism, while the information provided by the KEGG analysis suggests changes in the nitrogen metabolism and metabolic pathways, there is some information published that may prove those predictions. For instance, Leyva-Soto et al found in a randomized placebo-controlled study (n=156) of patients with metabolic syndrome supplemented with enriched bread with QRC that in comparison with controls, total cholesterol, LDL-cholesterol, total triglycerides, and fasting plasma glucose significantly decreased (25). As for the results of KEGG for HA, while the results suggest it has an impact on pathways associated with the nervous system and others like PPAR, to date, there

is little to no information regarding tests in the areas of most of the pathways described for HA. However, there has been some research regarding the impact of HA on rats and their results have shown some potential therapeutic effect (26,27).

The protein-to-protein analysis also supports varies ideas (28–35), for PI3K-AKT pathway is a major target of DS3, by having AKT being the most linked node of the whole analysis. Also, the information on the hub genes (Table 2) shows the trend of the genes to be related to the metabolism of glucose and nitrogen, inflammation, and angiogenesis. This not only has concordance with the previous results shown but also includes angiogenesis, a process related to the production of nitric oxide and therefore to blood pressure. This is of interest since another of the most reported effects of DS3 is its potential as a hypotensive (36). The protein-to-protein analysis for QRC is vastly different. In general, as Figure 4 shows, there are many more interactions between proteins than in the other two figures, even so, it seems that most of the interactions congregate around proteins related to cancer or inflammation in some way. Such results are interesting since plenty of the research available presents an interest in using QRC for cancer treatment (12,14,17–19,37). Finally, the protein-to-protein for HA is drastically different from the other two, there is a greater separation between interactions where the focus relies upon the interactions of different glutamate-related proteins/receptors but there is little if any information published about this interaction.

As for the evidence research, using the PubMed database was looked for any information regarding the hub genes obtained from the protein-to-protein analysis and each of the biocompounds. In the case of DS3, it is fascinating to see the effects on EGFR, being the one that has more evidence of what happens when exposed to DS3: reducing the expression of the gene, suppressing the function of the protein transcribed from it, and, finally, being associated with inhibiting the whole PI3K-AKT pathway in this condition (4,7,8,38). However, it is important to note how most of the other genes do have some predicted alterations but, there was not much information to be found about their relationship with DS3 (if any), therefore the importance of studying them a posteriori is suggested. In the case of QRC, plenty of the interactions are correlated with pathways associated with cancer, and most of them influence the proteins, changing phosphorylation effects of receptors like EFGR or PI3K (15–20), even so, most of the hub genes gathered from the protein- to-protein analysis didn't have any information present, therefore it's important to remark how much more information could be gathered in the future. Lastly, HA have no information regarding it and its hub genes/proteins.

5. Conclusions

The predictive analysis indicates that DS3 has the potential to trigger changes in genes related to nitrogen and glucose metabolism, inflammation, angiogenesis, and cell proliferation. The available information suggests those changes can also occur directly in the protein and not only in mRNA. Also, quite possibly the most important result according to the bioinformatic tools is the potential modification in the function of plenty of signaling pathways, in particular the effects that DS3 has in the PI3K-AKT, these results are also supported by the findings that were discussed before. However, there are not enough published studies about DS3 and its other potential targets (suggested by the bioinformatic tools), the lack of research in that area opens a wide field to conduct new studies with a high probability of showing significant relevance to understand the mechanisms that DS3 has in human cells. In many instances, the same can be said about QRC, while this biocompound seems to have many more potential targets and it has been more studied than any other, there is still much more to research about it, especially in its relationship with cancer treatment, because most of the effects suggested by the bioinformatic tools have a direct (or indirect) relationship with the cancer disease. Finally, the results of HA may be the most interesting one, this compound is to our knowledge the least researched of all, the results of the bioinformatic assay suggest that the effects of HA could be mostly on the nervous system, something that it seems under-reported. In the end, it is important to remark that the results of this study suggest the need to generate more research to understand better the mechanisms and applications that not only DS3, QRC, or HA have in humans but, also the natural products that contain them, such as *Hibiscus sabdariffa*.

Supplementary Materials: The following supporting information can be downloaded at the website of this paper posted on Preprints.org, See the file named Supplementary Material

Author Contributions: Conceptualization, Sergio Zúñiga-Hernández and Christian Rodríguez-Razón; Data curation, Alejandro Pérez-Larios; Formal analysis, Alejandro Pérez-Larios; Funding acquisition, Christian Rodríguez-Razón; Investigation, Sergio Zúñiga-Hernández and Monserrat Macías-Carballo; Methodology, Yanet Karina Gutiérrez-Mercado and Christian Rodríguez-Razón; Project administration, Yanet Karina Gutiérrez-Mercado; Resources, Monserrat Macías-Carballo; Supervision, Trinidad García-Iglesias and Christian Rodríguez-Razón; Visualization, Gabriela Camargo-Hernández; Writing – original draft, Sergio Zúñiga-Hernández; Writing – review & editing, Trinidad García-Iglesias, Monserrat Macías-Carballo, Alejandro Pérez-Larios, Yanet Karina Gutiérrez-Mercado, Gabriela Camargo-Hernández and Christian Rodríguez-Razón. "All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Ojulari OV, Lee SG, Nam JO. Beneficial Effects of Natural Bioactive Compounds from Hibiscus sabdariffa L. On obesity. Molecules. 2019;24(1):1–14.
- 2. Amos A, Khiatah B. Mechanisms of Action of Nutritionally Rich Hibiscus sabdariffa's Therapeutic Uses in Major Common Chronic Diseases: A Literature Review. J Am Nutr Assoc. 2021 Jan;41(1):116–24.
- 3. Long Q, Chen H, Yang W, Yang Li and Zhang L. Delphinidin-3-sambubioside from Hibiscus sabdariffa. L attenuates hyperlipidemia in high fat diet-induced obese rats and oleic acid-induced steatosis in HepG2 cells. Bioengineered. 2021 Dec;12(1):3837–49.
- 4. Fridrich D, Teller N, Esselen M, Pahlke G, Marko D. Comparison of delphinidin, quercetin and (-)epigallocatechin-3-gallate as inhibitors of the EGFR and the ErbB2 receptor phosphorylation. Mol Nutr Food Res. 2008 Jun;52(7):815–22.
- Lee MJ, Chou FP, Tseng TH, Hsieh MH, Lin MC, Wang CJ. Hibiscus protocatechuic acid or esculetin can inhibit oxidative LDL induced by either copper ion or nitric oxide donor. J Agric Food Chem [Internet]. 2002 Mar 27 [cited 2022 May 19];50(7):2130–6. Available from: https://pubmed.ncbi.nlm.nih.gov/11902968/
- 6. Syed DN, Afaq F, Sarfaraz S, Khan N, Kedlaya R, Setaluri V, et al. Delphinidin inhibits cell proliferation and invasion via modulation of Met receptor phosphorylation. Toxicol Appl Pharmacol. 2008 Aug 15;231(1):52–60.
- 7. Teller N, Thiele W, Boettler U, Sleeman J, Marko D. Delphinidin inhibits a broad spectrum of receptor tyrosine kinases of the ErbB and VEGFR family. Mol Nutr Food Res. 2009;53(9):1075–83.
- Pal HC, Sharma S, Strickland LR, Agarwal J, Athar M, Elmets CA, et al. Delphinidin Reduces Cell Proliferation and Induces Apoptosis of Non-Small-Cell Lung Cancer Cells by Targeting EGFR/VEGFR2 Signaling Pathways. PLoS One. 2013 Oct 4;8(10).
- 9. Mohammadi-Bardbori A, Bengtsson J, Rannug U, Rannug A, Wincent E. Quercetin, Resveratrol, and Curcumin Are Indirect Activators of the Aryl Hydrocarbon Receptor (AHR). Chem Res Toxicol. 2012 Sep 17;25(9):1878–84.
- 10. Ciolino HP, Daschner PJ, Yeh GC. Dietary flavonols quercetin and kaempferol are ligands of the aryl hydrocarbon receptor that affect CYP1A1 transcription differentially. Biochem J. 1999 Jun 15;340 (Pt 3)(Pt 3):715–22.
- 11. Škarydová L, Živná L, Xiong G, Maser E, Wsól V. AKR1C3 as a potential target for the inhibitory effect of dietary flavonoids. Chem Biol Interact. 2009 Mar 16;178(1–3):138–44.
- 12. Chou CC, Yang JS, Lu HF, Ip SW, Lo C, Wu CC, et al. Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through the mitochondrial pathway in human breast cancer MCF-7 cells. Arch Pharm Res. 2010 Aug;33(8):1181–91.
- 13. Yousuf M, Khan P, Shamsi A, Shahbaaz M, Hasan GM, Haque QMR, et al. Inhibiting CDK6 activity by quercetin is an attractive strategy for cancer therapy. ACS Omega. 2020 Oct 27;5(42):27480–91.
- Mense SM, Chhabra J, Bhat HK. Preferential induction of cytochrome P450 1A1 over cytochrome P450 1B1 in human breast epithelial cells following exposure to quercetin. J Steroid Biochem Mol Biol. 2008 May;110(1–2):157–62.
- 15. Liu Y, Li Y, Xu L, Shi J, Yu X, Wang X, et al. Quercetin Attenuates Podocyte Apoptosis of Diabetic Nephropathy Through Targeting EGFR Signaling. Front Pharmacol. 2022 Jan 5;12.
- 16. Chen K, Rekep M, Wei W, Wu Q, Xue Q, Li S, et al. Quercetin Prevents In Vivo and In Vitro Myocardial Hypertrophy Through the Proteasome-GSK-3 Pathway. Cardiovasc Drugs Ther. 2018 Feb 1;32(1):5–21.

- 17. Chen WJ, Tsai JH, Hsu LS, Lin CL, Hong HM, Pan MH. Quercetin blocks the aggressive phenotype of triple-negative breast cancer by inhibiting igf1/ igf1r-mediated emt program. J Food Drug Anal. 2021;29(1):98–112.
- 18. Bandaruk Y, Mukai R, Terao J. Cellular uptake of quercetin and luteolin and their effects on monoamine oxidase-A in human neuroblastoma SH-SY5Y cells. Toxicol Rep. 2014 Dec 1;1:639–49.
- 19. Cao HH, Cheng CY, Su T, Fu XQ, Guo H, Li T, et al. Quercetin inhibits HGF/c-Met signaling and HGFstimulated melanoma cell migration and invasion. Mol Cancer. 2015 May 14;14(1).
- 20. Tu H, Ma D, Luo Y, Tang S, Li Y, Chen G, et al. Quercetin alleviates chronic renal failure by targeting the PI3k/Akt pathway. Bioengineered. 2021;12(1):6538–58.
- 21. Gfeller D, Michielin O, Zoete V. Shaping the interaction landscape of bioactive molecules. Bioinformatics. 2013 Dec 1;29(23):3073–9.
- 22. Yan L, Zhang Z, Liu Y, Ren S, Zhu Z, Wei L, et al. Anticancer Activity of Erianin: Cancer-Specific Target Prediction Based on Network Pharmacology. Front Mol Biosci. 2022 Mar 17;9.
- 23. Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020 Apr 15;36(8):2628–9.
- 24. Vaez S, Parivr K, Amidi F, Rudbari NH, Moini A, Amini N. Quercetin and polycystic ovary syndrome; inflammation, hormonal parameters and pregnancy outcome: A randomized clinical trial. Am J Reprod Immunol. 2023 Mar;89(3):e13644.
- 25. Leyva-Soto A, Alejandra Chavez-Santoscoy R, Porras O, Hidalgo-Ledesma M, Serrano-Medina A, Alejandra Ramírez-Rodríguez A, et al. Epicatechin and quercetin exhibit in vitro antioxidant effect, improve biochemical parameters related to metabolic syndrome, and decrease cellular genotoxicity in humans. Food Research International. 2021 Apr;142:110101.
- 26. Zheoat AM, Gray AI, Igoli JO, Ferro VA, Drummond RM. Hibiscus acid from Hibiscus sabdariffa (Malvaceae) has a vasorelaxant effect on the rat aorta. Fitoterapia [Internet]. 2019 Apr 1 [cited 2022 May 19];134:5–13. Available from: https://pubmed.ncbi.nlm.nih.gov/30690125/
- 27. Lin WL, Hsieh YJ, Chou FP, Wang CJ, Cheng MT, Tseng TH. Hibiscus protocatechuic acid inhibits lipopolysaccharide-induced rat hepatic damage. Arch Toxicol [Internet]. 2003 [cited 2022 May 19];77(1):42–7. Available from: https://pubmed.ncbi.nlm.nih.gov/12491040/
- 28. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. STRING v9.1: proteinprotein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2012 Nov 29;41(D1):D808–15.
- von Mering C, Jensen LJ, Kuhn M, Chaffron S, Doerks T, Kruger B, et al. STRING 7--recent developments in the integration and prediction of protein interactions. Nucleic Acids Res. 2007 Jan 3;35(Database):D358– 62.
- Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 2011 Jan 1;39(Database):D561–8.
- 31. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 2017 Jan 4;45(D1):D362–8.
- 32. Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, et al. STRING 8--a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 2009 Jan 1;37(Database):D412–6.
- 33. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 Jan 8;47(D1):D607–13.
- 34. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021 Jan 8;49(D1):D605–12.
- 35. Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, et al. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023 Jan 6;51(D1):D638–46.
- Ojeda D, Jiménez-Ferrer E, Zamilpa A, Herrera-Arellano A, Tortoriello Jaime and Alvarez L. Inhibition of angiotensin convertin enzyme (ACE) activity by the anthocyanins delphinidin- and cyanidin-3-Osambubiosides from Hibiscus sabdariffa. J Ethnopharmacol. 2009 Oct;127(1):7–10.
- 37. Huang YT, Hwang JJ, Lee PP, Ke FC, Huang JH, Huang CJ, et al. Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis-associated properties in A431 cells overexpressing epidermal growth factor receptor. Br J Pharmacol. 1999 Nov;128(5):999–1010.
- 38. Syed DN, Afaq F, Sarfaraz S, Khan N, Kedlaya R, Setaluri V, et al. Delphinidin inhibits cell proliferation and invasion via modulation of Met receptor phosphorylation. Toxicol Appl Pharmacol. 2008 Aug;231(1):52–60.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.