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Abstract: The synthesis of inorganic nanoparticles for diverse applications is an active research area
that involves physical and chemical methods, which typically are expensive, involve hazardous
chemical reagents, use complex equipment and synthesis conditions, and consume large amounts of
time and energy. Thus, green synthesis methods have emerged as eco-friendly and easy alternatives
for inorganic nanoparticle synthesis, particularly the use of plant-based extracts from fruit juice,
leaves, seeds, peel, stem, barks, and roots, which act as reducing, capping, and stabilizing agents,
contributing to the Sustainable Development Goals and circular economy principles. Therefore,
diverse inorganic nanoparticles have been synthesized using plant-based extracts, including gold,
silver, titanium dioxide, zinc, copper, platinum, zirconium, iron, selenium, magnesium, nickel, sulfur,
cobalt, palladium, and indium nanoparticles, which exhibit different biological activities such as
antioxidant, antimicrobial, dye degradation, cytotoxic, analgesic, sedative, wound-healing, skin pro-
tection, sensor development, and plant-growth-promoting effects. Therefore, this review summarizes
the advantages and limitations of plant-based extracts as reducing, capping, and stabilizing agents
for inorganic nanoparticle green synthesis.

Keywords: nanotechnology; plants; food waste; circular economy; nanoscale materials; natural
extracts; green synthesis; biological applications

1. Introduction

In the current scientific era, nanotechnology has emerged as an active research area
with a wide range of applications, including physics, biology, chemistry, medicine, elec-
tronics, engineering, and environmental sciences [1], attributed to the superior physical,
chemical, thermal, mechanical, and biological properties (surface area, stability, adsorp-
tion, optical, mechanical strength, lower, melting points, catalytic, antimicrobial, antiox-
idant, and biocompatibility) that nanomaterials exhibit in comparison with their bulk
materials [2,3]. Various physical and chemical methods have been exploited to synthesize
inorganic nanoparticles; however, these methods are expensive, involve hazardous chemi-
cal reagents, use complex equipment and synthesis conditions, and require huge energy
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and time consumption [4]. To overcome these drawbacks, green synthesis methods are a
viable, technological, and eco-friendly alternative for the synthesis of NPs [4,5].

In the green synthesis approach, biological resources such as bacteria, fungi, yeast,
viruses, algae, and plants have been investigated as reducing agents for synthesizing
inorganic nanoparticles [4,5]. Particularly, the extract of different plant parts can be used,
such as the aerial parts, flowers, leaves, roots, stem bark, and seeds, which contain bioactive
compounds able to act as reducing agents during the synthesis of inorganic nanoparticles [2].
The main components typically required to reduce the oxidation state of a metal (often in a
salt form) are polyphenols, flavonoids, and stilbenes, among others [4]. These compounds
act as antioxidants; thus, they can interact with metallic salts to reduce the oxidation
value of the metal [5]. In green synthesis using plant extracts, the concentration of these
compounds varies depending on the method of extraction applied and the part of the plant
used [4,6].

Regarding the plant-based sources of bioactive compounds, it has been reported that
approximately 40–50% of global food waste globally comes from plant-based sources,
including fruits, vegetables, roots, tubers, edible flowers, leaves, peel, and seeds. These
sources can be used to obtain natural antioxidant compounds for synthesizing inorganic
nanoparticles. This strategy of using plant-based extracts to synthesize inorganic nanoparti-
cles directly contributes to the United Nations’ Sustainable Development Goals for the 2030
Agenda and aligns with the principles of the circular economy, which focuses on recycling,
recovery, and reutilization [7,8]. Therefore, this review aims to summarize the advantages
and limitations of using plant-based extracts as reducing, capping, and stabilizing agents
for the green synthesis of inorganic nanoparticles.

2. Synthesis of Inorganic Nanoparticles

The general methods for producing nanomaterials can be divided into physical and
chemical approaches [9]. In physical methods, experimental conditions are controlled
to create nanomaterials from bulk material or desired components. These methods start
from bulk materials and are called “top-down” approaches. They encompass techniques
like high-energy ball milling, inert gas condensation, laser ablation, wire explosion, arc
discharge, and ion sputtering [10,11].

In chemical methods, nanomaterials are manufactured from atoms produced from
ions in solution, which assemble to form the nanomaterials [11]. Since the synthesis begins
with atoms, these methods are known as “bottom-up” approaches. Methods belonging to
this category include chemical reduction, photochemical synthesis, sonochemical routes,
electrochemical, solvothermal, micelles and nanoemulsions, interfacial synthesis, biological
methods, thermolysis strategies (e.g., pyrolysis, spray pyrolysis), precipitation (mainly for
semiconductors and oxides), solvated metal atom dispersion, and hybrid methods that
systematically combine several of the previously mentioned methods to create intricate
structures [12–14].

Due to the nature of the physical and chemical processes, their main disadvantages
include high energy and solvent consumption to synthesize nanomaterials, which can
increase costs and harm environmental and human health [12]. In this context, the green
synthesis of nanoparticles has emerged as an active research area to reduce the negative
impact of nanoparticles synthesized by chemical and physical methods.

3. Green Synthesis of Inorganic Nanoparticles

In the green synthesis methods for producing inorganic nanoparticles, bacteria, fungi,
algae, and plants are used to reduce the oxidized state of metals, favoring the formation of
nanoparticles. Plant-mediated nanoparticle (NP) synthesis can be performed by extracellu-
lar and intracellular methods. The extracellular methods involve using plant extracts or
isolated phytochemicals as raw materials for the synthesis of NPs, while in the intracellular
methods, the NP synthesis takes place inside the cells of plant tissues [2]. The most pre-
ferred route for the green synthesis of NPs is the use of plant extracts because this process
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typically requires ambient pressure and temperature, as well as neutral pH values, usually
completed within a few minutes [5]. For the process, plant-extract-mediated bio-reduction
involves mixing an aqueous extract with an aqueous solution of the relevant metal salts [14]
(Figure 1).
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Figure 1. Schematic representation of typical green synthesis of inorganic nanoparticles using
plant-based extracts.

Plants are excellent sources of biomolecules such as phytochemicals (polyphenols,
flavonoids, terpenoids, alkaloids, and saponins), polysaccharides, and proteins, which
act as reducing, capping, and stabilizing agents for the green synthesis of NPs [3,5]. The
roots, seeds, flowers, leaves, peels, fruits, and stem barks of various plant species have
been investigated as potential sources for synthesizing NPs [3]. Nonetheless, the source of
a plant extract and type and the concentration of phytochemicals, as well as its extraction
method, are known to influence the characteristics of a nanostructure due to their hydroxyl
and ketone groups, which are capable of binding to metals and showing chelation [4].

4. Inorganic Nanoparticles Synthesized Using Plant-Based Extracts

As discussed in the preceding sections, using plant-based extracts as reducing and
stabilizing agents for synthesizing inorganic nanoparticles is an opportunity for developing
greener synthesis approaches. Therefore, diverse inorganic nanoparticles have been syn-
thesized using plant-based extracts, including gold, silver, titanium dioxide, zinc, copper,
platinum, zirconium, iron, selenium, magnesium, nickel, sulfur, cobalt, palladium, and
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indium nanoparticles, which exhibit different biological activities for diverse applications
(Figure 2), as described below.
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4.1. Gold Nanoparticles

Gold nanoparticles (AuNPs) have proved to be a versatile material for diverse
applications [15–18]. Therefore, many routes for its synthesis have been developed in-
volving the reduction of gold cations (Au1+ or Au3+) to gold-zerovalent (Au0) [15,19,20],
highlighting the green synthesis route, where diverse rich bioactive compounds from
plant-based extracts reduce gold precursors. Then, Au+ ions are bound and capped by
phytochemicals to form stable AuNPs [19,21,22] (Table 1). In most cases, the reduction of
gold is monitored by a color change from pale pink to ruby red, or to dark violet from
yellow for AuCl3 and HAuCl4, respectively, as AuNPs precursors [16,20,21]. The green-
mediated AuNPs exhibit XRD patterns of a face center cubic structure [(111), (200), (220),
and (311)] [16,18] and UV–visible absorption peaks between 530 and 550 nm [23], with an
Eg value of 1.9 eV [20].

Table 1. Gold nanoparticles synthesized by green chemistry using plant-based extracts.

Precursor
Used Plant Name Part Used Type of Extract Shape Size (nm) Application Ref.

Au salt Ricinus communis Seed Methanolic Spherical <100 Antimicrobial [15]

AuCl3 Vitis vinifera Fruit Aqueous NI NI Antimicrobial [18]

HAuCl4 Moringa oleifera Leaf Methanolic Spherical 4
Antimicrobial,

antioxidant, cytotoxic,
dye degradation

[19]

AuCl3 Jatropha integerrima Flower Aqueous Spherical 37 Antimicrobial [20]

HAuCl4 Licorice Root Aqueous Spherical 53 Antimicrobial,
anticancer [21]

HAuCl4 Pistacia chinensis Seed Aqueous Spherical 10–100 Analgesic, sedative [23]

HAuCl4 Zingiber officinale Root Aqueous Spherical 5–53 Antimicrobial,
antioxidant, cytotoxic [24]

HAuCl4 Clerodendrum inerme Leaf Aqueous Spherical 5.8 Antimicrobial,
antioxidant, cytotoxic [25]

NI: no information.

In general, the methanolic and aqueous extracts from flowers, roots, seeds, fruits, and
leaves of different plants have been used for the green synthesis of AuNPs with spherical
shapes and sizes from 4 to 100 nm for diverse applications [15,18,20,23]. Khan et al. [25]
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reported that AuNPs (5.8 nm) can be synthesized using Clerodendrum inerme aqueous leaf
extract, which exhibited antimicrobial, antioxidant, and cytotoxic activities. Similar trends
were reported in AuNPs (53 nm) synthesized using licorice root extract, which exhibited
antioxidant, antimicrobial, and anticancer activities in a concentration-dependent manner.
These activities are associated with the bioactive compounds of the licorice root extract that
includes phenolics, glycosides, organic acids, terpenes, and fatty acids [21]. Furthermore, it
has been reported that the green synthesis of AuNPs is influenced by the concentration of
gold precursor [20,21].

Boruah et al. [19] used Moringa oleifera methanolic leaf extract to synthesize spherical-
shaped AuNPs with size of 4 nm. They exhibited diverse biological properties, such as
antimicrobial, antioxidant, and cytotoxic activities in red blood cells; moreover, they also
showed photocatalytic properties against methylene blue dye. The authors suggested
that the bioactive compounds of the extract contributed to the enhanced biological and
technological properties of the AuNPs. Other studies have found similar trends when
using green-mediated AuNPs from Zingiber officinale root (antimicrobial, antioxidant, and
cytotoxic properties) [24], Ricinus communis seeds [15], Jatropha integerrima flower [20], and
Vitis vinifera fruit (antimicrobial activity) [18]. It was also reported that AuNP-mediated
Pistacia chinensis exhibited analgesic and sedative properties in an acetic-acid-induced
writhing model in a dose-dependent manner [23]. Furthermore, extracts from plants such
as Phoenix dactylifera [18], Simarouba glauca [22], Salvia officinalis, Lippia citriodora, Pelargonium
graveolens, Punica granatum [17], and Centella asiatica [16] have been investigated as reducing,
capping, and stabilizing agents for the green synthesis of AuNPs.

4.2. Silver Nanoparticles

Among the metal-based nanoparticles, silver nanoparticles (AgNPs) have become very
popular in the research community due to their wide range of applications, including for
antimicrobial, antioxidant, anticancer, and photocatalytic dye degradation applications [26–29].
In this context, the green synthesis of AgNPs using plant-based extracts as reducing agents (Ag+

to Ag0) has gained significant attention in recent years [30–32], with silver nitrate (AgNO3)
being the most used precursor for their synthesis [29,31–33]. After mixing AgNO3 aqueous
solution and plant extracts, the color of the reaction medium changes from yellowish green
to brownish [34,35], suggesting the conversion of Ag ions (Ag+) to metallic silver (Ag0) [31].
The green-mediated AgNPs exhibited surface plasmon resonance around 400–450 nm [31]
with a crystalline nature and a face-centered cubic structure XRD pattern of (111), (200),
(220), and (331) [35]. On the other hand, some green-synthesized AgNPs exhibited good
stability (zeta potential of −15.8 to 3.31 mV) [32]. Various plant-based extracts have been
investigated to prepare spherical AgNPs with sizes < 100 nm (Table 2).

Table 2. Green synthesis of silver nanoparticles using plant-based extracts.

Precursor
Used Plant Name Part Used Type of Extract Shape Size (nm) Application Ref.

AgNO3 Achillea millefolium Plant Methanolic Spherical 18 Antimicrobial,
antioxidant [28]

AgNO3 Annona muricata Peel Aqueous Spherical <100 Anticancer [30]

AgNO3 Zataria multiflora Leaf Aqueous Rod-shape 25 Antimicrobial [31]

AgNO3 Teucrium polium Leaf Aqueous Spherical 70–100 Antitumor [33]

AgNO3

Brillantaisia patula,
Crossopteryx febrifuga,

Senna siamea
Leaf Aqueous Spherical 45–110 Antimicrobial [35]

AgNO3 Gymnema sylvestre Leaf Aqueous Spherical 20–30 Antimicrobial [36]

AgNO3 Lysiloma acapulcensis Stem, roots Aqueous Spherical 5 Antimicrobial [37]

AgNO3 Onion, tomato Fruit Ethanolic Spherical 5–100 Dye
degradation [38]
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Various plants such as Zataria multiflora, Brillantaisia patula, Crossopteryx febrifuga, Senna
siamea, Gymnema sylvestre, Lysiloma acapulcensis, and Achillea millefolium have been used
to synthesize silver AgNPs, using extracts from different parts of the plant, such as the
leaves, stems, and roots [29,31,33,34]. It was reported that factors such as the plant extract,
pH, and temperature significantly influenced the green synthesis of AgNPs [39]. These
green-mediated AgNPs have exhibited antimicrobial properties against various pathogenic
bacteria and fungi [27,28,31,35–37]. According to the authors, the antimicrobial activity of
AgNPs is related to their ability to cause cell breakdown, which promotes changes in the
cell membrane’s permeability.

It has been found that green-synthesized AgNPs prepared from aqueous extracts
derived from Annona muricata peel, Teucrium polium leaves, and Cynara scolymus leaf ex-
tracts exhibit anticancer properties at very low concentrations, attributed to their apoptotic
properties [30,34,38–40]. Additionally, green-synthesized AgNPs using Achillea millefolium
and Annona muricata extracts exert anti-inflammatory and antioxidant activities [28,30].
Chand et al. [38] reported that AgNPs synthesized using onion and tomato extracts exhib-
ited photocatalytic properties against cationic dyes in aqueous solutions, with the effect
attributed to the capability of AgNPs to produce reactive oxygen species under the UV
region [38].

In general, the plant-based extracts used for AgNPs green synthesis proceed through
reducing silver ions, primarily by the capability to donate electrons. Tannins were found
to play a key role in reducing and capping AgNPs in most cases [39]. Furthermore, some
plant-based extracts, such as Centella Asiatica and Tridax, were used to synthesize silver
oxide (Ag2O) nanoparticles, which exhibited photocatalytic properties against acid orange
dye [27].

4.3. Titanium Dioxide Nanoparticles

Titanium dioxide nanoparticles (TiO2NPs) are one of the most investigated materials
due to their photocatalytic properties and chemical and thermal stability in diverse indus-
trial uses [41]. They have been typically synthesized by chemical routes [42]; however,
TiO2NPs have been synthesized using green approaches using different plant-based extracts
and titanium-isopropoxide or titanium dioxide solution as chemical precursors (Table 3). In
most cases, a light-green formation after mixing TiO2 precursor and plant extracts indicates
the reduction of Ti ions [43]. The green-mediated TiO2NPs exhibited a strong UV absorp-
tion peak around 380 to 400 nm and a crystalline structure in their anatase and rutile forms
[Miller index = (101), (110), (103), (004), (112), (200), (105), and (211)] [41] with negative zeta
potential (−18.7 to −11.5 mV) and large surface area (105 m2g−1) [44–46].

Table 3. Green synthesis of titanium dioxide nanoparticles using plant-based extracts.

Precursor Used Plant Name Part Used Type of
Extract Shape Size (nm) Application Ref.

Titanium dioxide
solution (5 mM) Azadirachta indica Leaf Aqueous Spherical 15–50 Antibacterial [41]

Titanium dioxide
solution (5 mM)

Sesbania
grandiflor Leaf Aqueous Square and

spherical 43–56 NI [43]

Titanium dioxide
solution (5 mM) Ocimum sanctum Leaf Aqueous

Spherical,
polygonal,
and square

75–123
Wound-
healing

properties
[44]

Titanium tetra
isopropoxide Mentha arvensis Leaf Ethanolic Spherical 20–70 Antimicrobial [45]

Titanium-
isopropoxide (5 mM) Syzygium cumini Leaf Aqueous Spherical 18 Wastewater

treatment [46]
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Thakur et al. [41] synthesized TiO2NPs using Azadirachta indica aqueous leaf ex-
tract as a stabilizing and reducing agent, with anatase and rutile structures, spherical
shapes, and sizes from 15 to 50 nm, which exhibited antibacterial activity against different
Gram-negative bacteria. Similarly, TiO2NPs (spherical and 20–70 nm in size) prepared by
green synthesis using Mentha arvensis leaf extracts showed antimicrobial activity in a dose-
dependent manner [45]. According to the authors, the phytochemicals such as alkaloids,
terpenoids, and phenolics in Azadirachta indica and Mentha arvensis acted as stabilizing
and reducing agents during TiO2 synthesis. The antimicrobial effect of TiO2 is due to its
capability to interact with the cell wall of microorganisms, promoting cell death [41,45].

Sethy et al. [46] reported that TiO2NPs (anatase phase) synthesized using an aqueous
leaf extract of Syzygium cumini exhibited photocatalytic properties for removing Pb from
wastewater, associated with its ability to generate OH radicals in the presence of light. On
the other hand, recent research also showed that TiO2NPs (anatase form, spherical and
polygonal shape, 130 nm in size), prepared by a green synthesis approach using Ocimum
sanctum leaf extract, could improve the wound-healing efficacy of chitosan hydrogels in
diabetics rats [44]. This effect was attributed to the antimicrobial properties of TiO2 [45].
The authors suggested that the presence of phytochemicals in plant-based materials plays
an important role in the reduction, capping, and stabilization of TiO2 [44,46].

Srinivasan et al. [43] synthesized TiO2NPs in the anatase phase using aqueous leaf
extracts of Sesbania grandiflora, which exhibited square and spherical shapes with sizes
ranging from 43 to 56 nm, completing the reduction at room temperature. Furthermore,
the study revealed that TiO2NPs exhibited toxicological effects against zebrafish embryos
in a dose-dependent manner. Therefore, further studies are needed to fully evaluate the
possible toxic effects of TiO2NPs synthesized by green synthesis methods.

Additionally, the green synthesis of TiO2NPs has been performed using different plant-
based extracts, including Moringa oleifera [47], Psidium guajava [48], Arbor tristis [49], Eclipta
prostrata [50], and Ageratina altissima leaves [51], Vigna unguiculata seeds [52], Calotropis
gigantea flowers [53], Aloe vera [54], Vigna radiata legumes [55], and Curcuma longa plant [56].
These TiO2NPs exhibited potential industrial, environmental, and pharmaceutical applica-
tions due to their wound healing, antimicrobial, antioxidant, dye photocatalytic degrada-
tion, acaricidal, and cytotoxic properties [47,49,51–53,55].

4.4. Zinc Nanoparticles

Zinc nanoparticles (ZnNPs) have unique features like being nontoxic, low-cost, bio-
compatible, multifunctional, and eco-friendly. They have been investigated for diverse
applications due to their antimicrobial, antifungal, nanomedicine, antioxidant, and pho-
tocatalytic activities [57–59]. ZnNPs have been green-synthesized using extracts from the
leaves, flowers, stem bark, and fruit juice from various plant species (Table 4), which are
mostly spherical, with sizes smaller than 60 nm. The most common Zn precursors are zinc
nitrate and zinc acetate [60,61]. After mixing the plant extracts and Zn precursors, a white
or yellowish paste is observed, indicating successful formation [62,63]. The green-mediated
ZnNPs exhibited a strong UV absorption peak around 300–400 nm [63,64] and a crystalline
structure in their hexagonal wurtzite phase [Miller index = (100), (002), (101), (102), (110),
(200), (112), (201), (004), and (202)], where each Zn+2 ion was ordered in a tetragonal co-
ordination with a polar symmetry throughout the hexagonal axis [62,65]. These ZnNPs
exhibited Eg values from 2.67 to 3.37 eV and a negative zeta potential (−40 mV) [63,65].
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Table 4. Green synthesis of zinc dioxide nanoparticles using plant-based extracts.

Precursor
Used Plant Name Part Used Type of

Extract Shape Size (nm) Application Ref.

Zinc nitrate Limonia
acidissima Fruit (juice) Aqueous Spherical 27 Antimicrobial, dye

degradation [60]

Zinc nitrate
hexahydrate

Xanthium
indicum Leaf Ethanolic Spherical 50–60

Antioxidant,
antimicrobial,

antifungal,
cytotoxicity, and pho-
tocatalyticactivities.

[66]

Zinc acetate
dihydrate

Eriobutria
japonica Seed Aqueous Spherical <50

Antimicrobial,
antioxidant, Dye

degradation
[57]

Zinc nitrate Hibiscus
sabdariffa Flower Aqueous Spherical 8–30 Dye degradation [58]

Zinc nitrate Euphorbia
hirta Leaf Ethanolic Spherical 20–25 Antimicrobial,

antifungal [59]

Zinc nitrate
hexahydrate

Hydnocarpus
alpina

Leaf and
stem bark Ethanolic Spherical 38.84 Antimicrobial [67]

Zinc nitrate
hexahydrate

Cayratia
pedata Leaf Aqueous Horizontal

shape 52.24 Enzymeimmobilization [68]

Zinc acetate
dihydrate Lippiaadoensis Leaf Aqueous Spherical and

nanorod 19.78 Antimicrobial [61]

Madhukara et al. [60] used Limonia acidissima juice for zinc ferrite (ZnFe2O4) nanopar-
ticle synthesis with photocatalytic properties against Evans blue and methylene blue dyes
under visible light in a concentration-dependent manner, as well as antibacterial activity
against in a strain- and dose-dependent manner. It has been reported that green-synthesized
ZnNPs using Eriobutria japonica seed [57], Hibiscus sabdariffa [58], or Hydnocarpus alpina [67]
extracts are active against methylene blue dye in a dose-dependent manner; moreover, they
exhibit antimicrobial activity against various bacterial strains [57,67]. However, ZnNPs
exhibit higher antimicrobial activity against Gam-negative bacteria than Gram-positive
bacteria due to differences in the thickness of the peptidoglycan layer; thus, ZnNPs can
enter cells and inhibit their replication and growth. Additionally, ZnNPs synthesized using
Lippia adoensis [61], as well as Euphorbia hirta extracts, showed antibacterial activity in a
strain- and dose-dependent manner.

Bitopan et al. [66] studied the biocompatibility of ZnNPs using Xanthium indicum leaf
extract as a reducing and stabilizing agent and reported that the ZnNPs did not show
hemolytic action at lower concentrations; however, negative effects were observed at higher
concentrations (>25 mg/mL). The authors mentioned that the ZnNPs synthesized by the
green route demonstrated the weakest cytotoxic effects compared with those obtained by
the chemical route. Additionally, Ashwini et al. [68] synthesized ZnNPs using Cayratia
pedate as an enzyme glucose oxidase immobilizer for biomedical applications.

4.5. Copper Nanoparticles

Copper nanoparticles (CuNPs) are gaining significant attention due to their electrical,
optical, mechanical, catalytic, and antimicrobial properties [69]. They have been green-
synthesized using aqueous extracts from the leaves, flowers, and fruits from various plants
for environmental and antimicrobial purposes [3,70–72]. The most common precursors
for CuNPs are copper (II) sulfate pentahydrate [3,69,71,73], cupric nitrate trihydrate [70],
copper chloride (II) [71,73,74], and copper (II) acetate [75] (Table 5). The formation of
CuNPs is confirmed through a color change of the reaction mixture from yellowish to
brownish [71,73], yellow to green [3], or blue to brown [72], depending on the Cu precursor.
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Green-mediated CuNPs exhibited a UV absorption peak ranging from 269 to 580 nm, which
depends on the CuNPs’ energy state [3,69]. In most cases, CuNPs exhibited a monocyclic
configuration [Miller index = (110), (111), (220), (800), and (713)] [71]. These CuNPs are
mostly spherical with sizes ranging from 2 to 80 nm [3,70–74] and a negative zeta potential
(−33.98 mV) [74].

Table 5. Green synthesis of copper nanoparticles using plant-based extracts.

Precursor Used Plant Name Part Used Type of
Extract Shape Size (nm) Application Ref.

Copper (II) Sulfate
pentahydrate

Celastrus
paniculatus Willd Leaf Aqueous Spherical 2–10 Dye degradation,

antifungal [3]

Cupric nitrate
trihydrate Genus santalum Leaf Aqueous Irregular 22 Dye degradation [70]

Copper (II) sulfate
pentahydrate Calotropis procera Leaf Aqueous Spherical 20–80 Antimicrobial [73]

Copper chloride (II) Tinospora
cardifolia Leaf Aqueous Spherical 63 Antimicrobial [74]

Copper sulfate
pentahydrate Duranta erecta Fruit Aqueous Spherical 70 Dye degradation [69]

Copper (II) acetate Lantana camara Flower Aqueous Rod-shape 15–23 Dye degradation [75]

Copper chloride Jatropha curcas Leaf Aqueous Spherical 10–12 Dye degradation [71]

Copper sulphate Cissus vitiginea Leaf Aqueous Spherical 5–20 Antimicrobial [72]

Mali et al. [3] used Celastrus paniculatus aqueous leaf extract as a reducing agent to
synthesize spherical CuNPs (Cu purity of 79.87%, size of 2–10 nm) with photocatalytic and
antifungal properties. Similarly, it was reported that CuNPs (spherical and size of 63 nm)
prepared using Tinospora cardifolia aqueous leaf extract exhibited antibacterial activity and
could be impregnated in cotton fabrics [74]. Additionally, Cissus vitiginea leaf extract was
used to synthesize CuNPs (spherical and size of 5–20 nm) active against urinary infection
pathogens [72]. The antimicrobial properties of CuNPs are based on changes in the cell
structure of microorganisms, leading to cell death [3,72,74]. In general, the biomolecules
present in plant extracts act as reducing and stabilizing agents during the formation of
CuNPs. Particularly, flavonoids are transformed from the enol form to the keto form by
releasing a reactive hydrogen atom that reduces Cu2+, which is facilitated at pH 7 [3].

Ismail et al. [69] reported that zerovalent CuNPs synthesized using Duranta erecta aque-
ous fruit extract showed photocatalytic activity against anionic dyes in a dose-dependent
manner. Similarly, CuNPs with photocatalytic properties against anionic and cationic dyes
could be synthesized using Jatropha curcas leaf extract [71].

Additionally, Chowdhury et al. [75] synthesized copper oxide nanoparticles (CuONPs)
with Lantana camara flower extract in an alkaline hydrolysis process. The resulting rod-
shaped nanoparticles (15–23 nm in size) exhibited catalytic properties against acrylonitrile
and aniline. Similarly, CuONPs synthesized using Calotropis procera leaf extract exhibited
antimicrobial activity. Furthermore, Cu-based nanoparticles have also been doped with
inorganic materials to enhance their physicochemical properties. Green-synthesized Cu-
doped MoO3 (Cu-MoO3) nanoparticles prepared using Genus Santalum aqueous leaf extract
enhanced the photocatalytic properties in degrading hazardous organic pollutants [70].
Cu-doped silver (Cu-Ag) nanoparticles could remove dyes from aqueous solutions [76],
while copper–nickel hybrid nanoparticles synthesized using extracts from Zingiber officinale
rhizomes showed photocatalytic activity against crystal violet dye [77].
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4.6. Platinum Nanoparticles

Over the past few years, researchers have been exploring the use of aqueous extracts
from various plant materials, including Cordyceps militaris, Nymphaea tetragona, Atriplex
halimus, olive, Saudi’s dates, and tea polyphenols, along with their parts, to synthesis plat-
inum nanoparticles (PtNPs) (Table 6). For this purpose, hexachloroplatinic acid (H2PtCl6)
is commonly used as precursor to produce spherical-shaped PtNPs ranging from 1 to
13 nm [78–80]. After mixing plant extracts and H2PtCl6, the color of the reaction mix-
ture gradually changed from pale yellow to brown or black, indicating the reduction to
Pt0 [79–83]. The green-mediated PtNPs exhibited surface plasmon resonance around 230 to
295 nm and a cubic structure XRD pattern of (111), (200), (220), and (311) [81,82] with a zeta
potential of −17.28 to −0.0536 mV [80,84,85].

Table 6. Green synthesis of platinum nanoparticles using plant-based extracts.

Precursor
Used Plant Name Part Used Type of

Extract Shape Size (nm) Application Ref.

H2PtCl6 Cordyceps militaris Flower Aqueous Spherical 13 Antimicrobial,
antioxidant [80]

H2PtCl6 Olive Leaf Aqueous Spherical 9.2
Inhibitory effect

of aspartate
aminotransferase

[83]

H2PtCl6 Nymphaea tetragona Flower Aqueous Spherical 4 Antioxidant, skin
protection [81]

H2PtCl6 Atriplex halimus Leaf Aqueous Spherical 3 Antimicrobial,
antioxidant [82]

H2PtCl6 Ajwa and Barni dates Fruit Aqueous Spherical 1–2 Antimicrobial,
anticancer agent [79]

H2PtCl6 Tea polyphenols Leaf Aqueous Spherical 2.7 H2O2 detection [78]

PtNPs have shown promising antimicrobial activity against pathogenic bacteria [79,80,82], as
well as antioxidant capacity [80–82]. Additionally, PtNPs have been found to possess
anticancer properties [79] and inhibit serum aspartate aminotransferase in serum levels
of patients with chronic liver disease [83]. PtNPs have also demonstrated antiaging ef-
fects/skin protection by promoting collagen I biosynthesis in HFF-1 cells and inhibiting
tyrosinase activity in A375 cells [81]. On the other hand, PtNPs with polycrystalline struc-
tures were used to develop sensors for hydrogen peroxide detection [78]. All authors
agreed that bioactive compounds in plant-based extracts exerted capping and reducing
effects, both associated with metal reduction and contribute as a stabilizing agent to form-
ing PtNPs, avoiding their agglomeration [78,79,82]. Furthermore, green synthesis of PtNPs
has been performed using hyacinth plant extracts [85] and seaweed Padina gymnospora [82]
with potential biomedical applications.

4.7. Zirconium Nanoparticles

Zirconium (ZrNPs) nanoparticles can be synthesized by green chemistry methods with
high purity using plant-based extracts for diverse applications, such as antimicrobial and
dye photocatalytic degradation [86]. They can be prepared from various precursors, includ-
ing zirconium isopropoxide [87], zirconylchloride octahydrate [88], zirconyl nitrate [84],
and zirconyl chloride [89]. After mixing a Zr precursor and plant extract, color changes
from yellow to brown [89] or milky white formation indicates the formation of ZrNPs [88].
Green-mediated ZrNPs exhibited monocyclic structure of baddeleyite [XRD (111), (002),
(022), (031), and (131)] [90], a UV absorption peak around 275 nm, an Eg value of 3.7 eV [91],
and a zeta potential of −32.8 mV [88,92]. The ZrNPs had cubic, spherical, triangular, and
oval shapes with sizes from 10 to <200 nm [87,88] (Table 7).
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Table 7. Green synthesis of zirconium nanoparticles using plant-based extracts.

Precursor Used Plant Name Part Used Type of
Extract Shape Size (nm) Application Ref.

Zirconium
isopropoxide

Azadirachta
indicia

Gum of the
bark Aqueous Irregular <200 Antimicrobial [87]

Zirconylchloride
octahydrate Laurus nobilis Leaf Aqueous Cubic 20–100 Antimicrobial [88]

Zirconyl nitrate Sphagneticola
trilobata Leaf Aqueous

Spherical,
triangular,
and oval

20–100 Antimicrobial [86]

Zirconyl chloride Phyllanthus niruri Leaf Aqueous Spherical 121 Antimicrobial,
dye degradation [89]

Zirconylchloride
octahydrate

Sapindus
mukorossias Pericarp Aqueous Spherical 10 Dye degradation [93]

H2PtCl6 Tea polyphenols Leaf Aqueous Spherical 2.7 H2O2 detection [78]

Kazi et al. [86] used aqueous leaf extracts from Sphagneticola trilobata to synthesize
ZrNPs of various shapes and sizes (20 to 100 nm). These nanomaterials showed antimicro-
bial properties and antimalarial activity. Similarly, spherical ZrNPs (121 nm) synthesized
using Phyllanthus niruri aqueous leaf extracts, cubic ZrNPs obtained from Laurus nobilis
(20 to 100 nm), and neem-gum nanoparticles displayed antimicrobial activity. In all cases,
the antimicrobial effects of ZrNPs were dose-dependent. According to the authors, the
antimicrobial properties of ZrNPs are related to their surface energy and surface-related
interactions, leading to cell death by disrupting cell membranes and altering membrane
fluidity [87–89].

Regarding environmental applications, ZrNPs synthesized by green methods with
extracts from the pericarp of Sapindus mukorossias and leaves of Phyllanthus niruri exhibited
photocatalytic properties for different dyes. These effects were attributed to the photocat-
alytic and adsorptive properties of ZrNPs [89,93].

The authors agreed that the presence of biomolecules in the plant-based extracts
played a crucial role in reducing, capping, chelating, and stabilizing the conversion to
ZrNPs due to their antioxidant properties [86,87,89,93]. These phytochemicals also helped
to form and stabilize the octahedral complex of Zr2+ phytochemicals [94]. Moreover,
zirconium oxide (ZrO2) nanoparticles can be synthesized using different plant-based ex-
tracts, including Euclea natalensis roots [95], Salvia Rosmarinus leaves [96], Helianthus annuus
seeds [91], Nephelium lappaceum fruit [90], and Nyctanthes arbortristis flowers [92] for diverse
industrial applications.

4.8. Iron Nanoparticles

Iron oxide nanoparticles (Fe2O3NPs) have gained significant attention due to their
unique physicochemical and catalytic properties for environmental and biomedical ap-
plications [97,98], mainly those synthesized by green routes using plant-based extracts.
Fe2O3NPs can be prepared from various precursors, including ferric chloride hexahydrate
(FeCl3·6H2O) [97], ferric nitrate (Fe(NO3)3·9H2O) [99], and ferrous sulfate (FeSO4) [100].
The formation of a black precipitate ensures the formation of α-Fe2O3 nanoparticles [101] or
Fe3O4 [102], which are corroborated by the XRD patterns [101]. The nanoparticles exhibited
spherical, semispherical, and cubic shapes with sizes ranging from 4 to 200 nm [97,100,103]
(Table 8).
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Table 8. Green synthesis of iron nanoparticles using plant-based extracts.

Precursor Used Plant Name Part Used Type of
Extract Shape Size (nm) Application Ref.

Ferric chloride
hexahydrate

Plantago
major Leaf Aqueous Spherical 4–30 Dye degradation [97]

Ferric nitrate Platanus
orientalis Leaf Aqueous Spherical 38 Antimicrobial [99]

FeSO4
Ixora

finlaysonian Plant Methanolic Rectangular
and Cubic 50–200 Antioxidant, Dye

degradation [100]

Ferric chloride
hexahydrate Carica papaya Leaf Aqueous Irregular 21 Dye degradation,

antimicrobial [101]

Ferric chloride
hexahydrate Ficus carica Fruit Aqueous Core-shell 9 NI [104]

Ferric chloride
hexahydrate

Phoenix
dactylifera Leaf Aqueous Spherical 22 Antioxidant [102]

Ferric chloride
hexahydrate

Withania
coagulans Fruit Aqueous Rods 16 Dye degradation [105]

Ferric chloride
hexahydrate Pomegranate Seed Aqueous Semi-

spherical 25–55 Dye degradation [103]

Ferric chloride
hexahydrate

Rhus
punjabensis Plant Aqueous Spherical 41

Antimicrobial,
antioxidant,
anticancer

[98]

Generally, the most common form of green-synthesized iron nanoparticles is iron
oxide (α-Fe2O3), which has been investigated for dye degradation, antimicrobial, and
antioxidant purposes [103–105]. In this context, Lohrasbi et al. [97] used an aqueous
extract of Plantago major leaves to prepare spherical Fe2O3NPs with sizes from 4 of 30 nm
for environmental applications, while Ficus carica fruit extract was used in core–shell
form with an average size of 9 nm. Additionally, Fe2O3 or Fe3O4 iron nanoparticles
synthesized using Phoenix dactylifera aqueous leaf extract were found to exhibit antioxidant
properties [102]. Nas et al. [98] reported that Fe2O3NPs synthesized using Rhus punjabensis
extract can be used for antimicrobial, antioxidant, and anticancer applications. This effect
is associated with the functional groups of the phenolics and flavonoids on the surface of
the nanoparticles [98].

Devi et al. [99] reported that Platanus orientalis leaf extract can be used for the green
synthesis of spherical Fe2O3NPs with an average size of 38 nm. These nanoparticles
exhibited antifungal activity in a dose-dependent manner, attributed to the capability of
Fe2O3NPs to disrupt microbial cell walls. Similarly, it was reported that Fe2O3NPs with
irregular shapes and an average size of 21 nm can be synthesized using Carica papaya
leaf extract, exhibiting moderate antimicrobial and photocatalytic properties in a dose-
dependent manner [101]. During the green synthesis of Fe2O3NPs, the phytochemicals
of plant extracts can reduce metallic salts to nanoparticles and act as stabilizing agents,
preventing the aggregation of nanoparticles. The bioactive compounds reacted with the
iron ions to give Fe2O3NPs, as the first-row transition metals are oxidation-prone. However,
it is possible that the phytochemicals are not able to reduce Fe3+ to Fe0 [99,101].

Furthermore, Withania coagulans extract was used as a reducing agent to prepare α-
Fe2O3 nanorods (16 nm) with photocatalytic and antimicrobial activities [105]. Similarly,
it was reported that using pomegranate seed extract, semispherical Fe2O3NPs (25–55 nm)
exhibited the catalytic degradation of reactive blue dyes under UV light [103]. On the
other hand, Fe-based nanoparticles doped with other inorganic materials showed enhanced
physicochemical properties. Younas et al. [100] found that green-synthesized Fe–Cu bimetal-
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lic nanoparticles using Ixora finlaysonian leaf extract with rectangular and cubic shapes and
sizes from 50 to 200 nm exhibited antioxidant and photocatalytic dye-degradation activities.

4.9. Selenium Nanoparticles

Selenium nanoparticles (SeNPs) are biocompatible compounds that exhibit low tox-
icity and high biological activities, which can be synthesized by green chemistry using
plant-based extracts from fruits, leaves, peel, and plants such as Crataegus monogyna [106],
Melia azedarach [107], Rosmarinus officinali [108], orange [109], Cleistocalyx operculatus [110],
Portulaca oleracea [111], Urtica dioica [112], Abelmoschus esculentus [113], Cordia myxa [114],
and Withania somnífera [115], with sodium selenite (Na2SeO3), selenium dioxide (SeO2),
and selenious acid (H2SeO3, as SeNPs precursors [106,110,115]. The formation of SeNPs
can be identified by a color change from light green to brick red [107], colorless to light
pink or red [106,114], or from pale yellow to deep red [106,109]. SeNPs exhibited a UV
absorption peak ranging from 200 to 302 nm with monocyclic and trigonal phases [106–110]
and a zeta potential of −64 mV [113]. These nanoparticles are spherical with sizes ranging
from 2 to 200 nm [110,111] and exhibit antioxidant, antimicrobial, antiviral, anticancer, and
photocatalytic activities [106,107,111,115] (Table 9).

Table 9. Green synthesis of selenium nanoparticles using plant-based extracts.

Precursor Used Plant Name Part Used Type of
Extract Shape Size (nm) Application Ref.

Sodium selenite Crataegus
monogyna Fruit Methanolic Spherical 30–60 Anticancer

antioxidant, [106]

Sodium selenite Melia azedarach Leaf Aqueous Spherical 74 Antifungal [107]

Sodium selenite Rosmarinus
officinali Plant Aqueous Spherical 20–40 Antimicrobial [108]

Sodium selenite Orange Peel Aqueous Spherical 16–95 Antimicrobial [109]

Selenium dioxide Cleistocalyx
operculatus Leaf Ethanolic Spherical 50–200 Antimicrobial [110]

Sodium selenite Portulaca oleracea Leaf Aqueous Spherical 2–22
Antimicrobial,

antiviral,
mosquitocidal

[111]

Selenium dioxide Urtica dioica Leaf Aqueous Spherical 85–162 Antimicrobial,
anticancer [112]

Sodium selenite Abelmoschus
esculentus Plant Aqueous Spherical 30 Antimicrobial [113]

Sodium selenite Cordia myxa Fruit Aqueous Spherical 42–61 Anticancer [114]

Selenious acid Withania
somnifera Leaf Ethanolic Spherical 45–90

Antioxidant,
antimicrobial,

antiproliferative,
dye degradation

[115]

Barzegarparay et al. [106] reported that green-synthesized SeNPs using Crataegus
monogyna methanolic fruit extract exhibited anticancer activity; using an ethanolic leaf
extract from Withania somnifera and Cordia myxa aqueous fruit extract, SeNPs showed
antiproliferative properties [114,115]. This effect was attributed to the apoptotic properties
of SeNPs, which were able to arrest the C2/M cell cycle [106], as well as to their antioxidant
activity [106,115].

Additionally, SeNPs prepared using Melia azedarach aqueous leaf extract exhibited
antifungal properties [107], while those synthesized using Rosmarinus officinali, Abelmoschus
esculentus, Cleistocalys operculants leaves, and orange peel extracts exhibit antimicrobial
activity [108–110,113]. Portulaca oleracea-based green SeNPs exhibited antimicrobial, an-
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tiviral, and mosquitocidal properties [111], while Urtica dioica-mediated SeNPs exerted
antifungal activity [112]. Additionally, it was reported that SeNPs synthesized using
combinations of plant extracts (Allium cepa, Malpighia emarginata, and Gymnanthemum
amygdalinum) exhibited antimicrobial activity [116]. Moreover, green-synthesized SeNPs
(Withania somnifera leaf extract) have been explored for the photocatalytic degradation of
methylene blue dye [115].

4.10. Magnesium Nanoparticles

Magnesium oxide nanoparticles (MgONPs) are an attractive material for antimicrobial
purposes [117]. Moreover, they have been investigated for other potential applications,
including dye degradation, antioxidant, cytotoxic, and antiaging applications [118–120].
The green synthesis of MgONPs has been performed using aqueous extracts from the
leaves, flowers, and barks of different plants [118,121,122], when magnesium nitrate
(Mg(NO3)2) [121] and magnesium chloride (MgCl2) [123] have been used as precursors
(Table 10). The formation of MgONPs can be identified by a color change from pale green
to brown [121], brownish to dark brownish-red [119], and colorless to dark brown [117,123].
Moreover, it has been reported that MgONPs exhibited a UV absorption peak around
280–290 nm and a hexagonal or cubic structure [117–119,122,123].

Table 10. Green synthesis of magnesium nanoparticles using plant-based extracts.

Precursor Used Plant Name Part Used Type of
Extract Shape Size (nm) Application Ref.

Magnesium
nitrate

Trigonella
foenum-graecum Leaf Aqueous Spherical 13 Antibacterial [121]

Aqueous
magnesium

solution

Rosmarinus
officinalis Flowers Aqueous Round <20 Antibacterial [122]

Magnesium
nitrate

hexahydrate
Dalbergia sissoo Leaf Aqueous Spherical 42 Antibacterial and

photocatalytic [118]

Magnesium
nitrate

hexahydrate

Rosa floribunda
charisma Flowers Aqueous Polyhedral 35–55

Antioxidant,
antiaging, and

antibiofilm
[119]

MgCl2 solution Moringa oleifera Leaf Aqueous Cubic 20–50 Antibacterial [117]

MgCl2 solution Moringa oleifera Bark Aqueous Spherical 60–100 Antioxidant and
antibacterial [123]

Mg(NO3)2 Abrus precatorius Bark Aqueous Irregular <100 Antioxidant and
cytotoxic [119]

Vergheese and Vishal [119] demonstrated that spherical MgONPs (13 nm) synthesized
using Trigonella foenum-graecum, Xanthomonas oryzae pv. Oryzae, and Dalbergia sissoo aqueous
leaf extract exhibited antibacterial activity [118]. In general, bioactive compounds such as
alkaloids, saponins, flavonoids, phenolics, and terpenoids act as a capping and stabilizing
agent during synthesis [120]. However, it must be noted that the pH of the reaction solution
may affect the reduction ability of bioactive compounds, mainly owing to the concentration
of hydroxyl ions in the medium [118].

Younis et al. [118] found that MgONPs (polyhedral and size of 35–55 nm) synthesized
using flower extracts of Rosa floribunda charisma exhibited antioxidant, antiaging, and
antibacterial activities in a dose-dependent manner against skin pathogens. Additionally,
the bark and leaf extracts of Moringa oleifera have been investigated for the synthesis of
MgONPs with antioxidant and antimicrobial activities [117,123]. Recently, it has been
reported that MgONPs with irregular shapes and sizes < 100 nm synthesized by a green
approach (Abrus precatorius aqueous bark extract) exhibited antioxidant, antibacterial,
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and cytotoxic activities without toxic effects on zebrafish embryos; moreover, MgONPs
exhibited the photocatalytic degradation of methylene blue dye [119].

4.11. Nickel Nanoparticles

Nickel/nickel oxide nanoparticles (NiNPs/NiONPs) have been green-synthesized
using aqueous extracts from the leaves, seeds, and flowers of various plants for environmen-
tal, antioxidant, antimicrobial, anticancer, and antileishmanial applications [76,124–126].
In the process, nickel nitrate (Ni(NO3)2) [127], nickel chloride (NiCl2) [128], and nickel
sulfate (NiSO4) [129] are the most commonly used precursors (Table 11). During the green
synthesis of NiNPs, the color of the reaction mixture changes from green to dark brown [77].
NiNPs were characterized by XRD [Miller index = (110), (111), (200), (220), and (311)], and
UV–Vis (surface resonance plasmon of 341 nm and bandgap energy of 1.57 eV) [126,128].

Table 11. Green synthesis of nickel nanoparticles using plant-based extracts.

Precursor Used Plant Name Part Used Type of
Extract Shape Size (nm) Application Ref.

Nickel nitrate Hordeum vulgare Seed Methanolic NI <100 Dye degradation [127]

Nickel(II)
chloride

hexahydrate
Syzygium cumini Leaf Aqueous Spherical 10 Dye degradation,

antioxidant [128]

NI Hammada scoparia Leaf NI NI NI Dye degradation,
antimicrobial [76]

Nickel nitrate Senna auriculata Flower Aqueous Quasi-
spherical 53 Dye degradation,

antimicrobial [130]

Nickel chloride Lactuca Serriola Seed Aqueous Spherical NI Dye degradation,
Antimicrobial [126]

Nickel nitrate Rhamnus virgata Leaf Aqueous Spherical 24

Antimicrobial.
anticancer,

antileishmanial,
antioxidant

[125]

Nickel(II) sulfate
hexahydrate Alhagi maurorum Leaf Aqueous Spherical 20–36 Anticancer [129]

Nickel nitrate Terminalia catappa Leaf Aqueous Spherical 19 Anticancer [124]

Yuan et al. [129] synthesized NiNPs (spherical, 20–36 nm) using Alhagi maurorum
leaf aqueous extract that exhibited cytotoxic and anti-human ovarian cancer activity in a
dose-dependent manner [125,128]. Similarly, it was reported that nickel ferrite (NiFe2O4)
nanoparticles (spherical shape, size of 19 nm) synthesized using Terminalia catappa aqueous
leaf extract exhibited anticancer activity in a dose-dependent manner, possibly through an
apoptosis mechanism. The average crystallite size of the Ni nanoparticles was reduced by
increasing the volume of the plant extract used [124].

Additionally, Rhamnus virgata leaf aqueous extract was used as stabilizing, reduc-
ing, and chelating agent during the formation of NiONPs, showing anticancer, antileish-
manial, and antimicrobial activities without toxicological effects in human RBCs and
macrophages [125]. Ali et al. [126] reported that green-synthesized spherical Ni/NiONPs
using the seed extract of Lactuca serriola exhibited antimicrobial properties in a strain-
and dose-dependent manner due to the capability of the nanoparticles to modify the cell
membrane and block the transport channels. Moreover, Senna auriculata-mediated and
Hammada scoparia-mediated NiONPs have exerted antimicrobial properties [76,130].

Furthermore, the seed extract of Hordeum vulgare was used to synthesize NiNPs and
NiONPs (<100 nm) and was able to degrade methylene blue dye, which exhibited first-order
kinetics [127]. Similarly, it was reported that NiONPs green-synthesized using Syzygium
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cumini leaf extract with a spherical shape and size of 10 nm exhibited photocatalytic activity
against methylene blue and Congo red dyes [128]. Moreover, other plant-based extracts
from the seeds, flowers, and leaves from Lactuca Serriola [126], Senna auriculata [130], and
Hammada scoparia [76], respectively, have been used for the green synthesis of Ni and NiO
nanoparticles for the photocatalytic degradation of crystal violet, methylene blue, and
malachite green [76,126,130].

4.12. Sulfur Nanoparticles

Sulfur nanoparticles (SNPs) are biocompatible compounds with a high surface area
and catalytic activity, which have great potential for diverse biomedical and agricultural ap-
plications [131]. These SNPs have been green-synthesized using aqueous extracts from var-
ious plant materials and their parts, including Rosmarinus officinalis [132], Citrus limon [131],
Aloe vera [133], Allium sativum [134], and Cinnamomum zeylanicum [135]. Sodium thiosulfate
pentahydrate is commonly used as a precursor for spherical SNPs, ranging from 40 to
69 nm in size [131–135]. After mixing the plant extract and sulfur precursor, a yellow color
indicates the formation of SNPs [135]. These nanoparticles agreed with the standard XRD
orthorhombic sulfur pattern [133] and exhibited a UV absorption peak of around 245 to
295 nm [132,133] with a zeta potential of −10.4 mV [134].

These SNPs have been used as plant-growth-promoting and nematicidal agents [132,134,135] and
are effective antimicrobial agents [131]. Furthermore, SNPs were embedded in a chitosan
nanohydrogel for wound-healing applications [131]. Table 12 lists some green-synthesized
sulfiur SNPs and their applications.

Table 12. Green synthesis of sulfur nanoparticles using plant-based extracts.

Precursor Used Plant Name Part Used Type of
Extract Shape Size (nm) Application Ref.

Sodium thiosulfate
pentahydrate

Rosmarinus
officinalis Leaf Aqueous Spherical 40 Nematicidal [132]

Sodium thiosulfate
pentahydrate Citrus limon Leaf Aqueous Spherical 40 Antimicrobial,

wound healing [131]

Sodium thiosulfate
pentahydrate Aloe vera Leaf Aqueous Spherical 69 No information [133]

Sodium thiosulfate
pentahydrate

Allium
sativum Plant Aqueous Irregular 45 Plant-growth-

promoting [134]

Sodium thiosulfate
pentahydrate

Cinnamomum
zeylanicum Bark Aqueous Spherical 43–61 Plant-growth-

promoting [135]

4.13. Other Nanoparticles Synthesized by Green Methods

The other nanoparticles synthesized by the green approach using plant-based extracts
as capping, reducing, and stabilizing agents include cobalt [136,137], palladium [138],
and indium [139,140]. Gingasu et al. [137] used an aqueous extract of ginger roots and
cardamom seeds to synthesize cobalt ferrite nanoparticles (CoFe2O4) with irregular forms
and sizes smaller than 100 nm. The authors reported that the Co2+ cation distribution was
higher than that of Fe3+, possibly associated with the nature of the plant extracts. Similarly,
cobalt oxide (Co3O4) nanoparticles were green-synthesized using Populus cilata aqueous
leaf extracts, which exhibited antimicrobial activity [136].

Vinodhini et al. [138] used Allium fistulous, Basella alba, and Tabernaemontana divaricate
aqueous leaf extracts to synthesize palladium nanoparticles with photocatalytic activity for
Congo red dye degradation. Moreover, palladium nanoparticles exhibited antioxidant and
antimicrobial properties in a concentration-dependent manner. Furthermore, palladium
nanoparticles prepared with Tabernaemontana divaricate leaf extract showed antidiabetic
activity in vitro inhibiting the α-amylase enzyme. According to the authors, polyphenol-
rich plant-based extracts played an important role in reducing the metal ions and stabilizing



Resources 2024, 13, 70 17 of 24

the inorganic nanoparticle formation, showing diverse potential applications [137,138]. On
the other hand, Aloe vera plant extract [140] and Astragalus gummifer gums [139] have been
used in green synthesis of indium oxide (In2O3) nanoparticles, which exhibited good optical
properties for further applications [139,140].

5. Advantages of and Challenges in the Green Synthesis of Nanoparticles

Green synthesis has many advantages compared with physical and chemical processes.
The inorganic nanoparticles obtained from green synthesis with plant extracts offers an
eco-friendly approach since the chemicals used are the bioactive compounds present in the
plant [4]. The compounds that reduce metals ions can stabilize the nanoparticles obtained,
which avoids the use of different solvents to achieve reduction and capping [141]. Also,
operational conditions are mainly environmental, so external energy is unnecessary for
the nanoparticles to form. The compounds present in different parts of the plant vary;
thus, they allow the synthesis of nanoparticles with interesting morphologies, sizes, and
distributions, which opens the possibility of producing a wide catalog of nanoparticles
according to their use [142].

On the other hand, some of the challenges for the synthesis of inorganic nanoparticles
through plant extracts include low production yield. This can be attributed to the amount
and type of bioactive compounds in the extract, which vary depending on the plant
and part selected, the growth location, and period of collection. Also, achieving high
reproducibility implies a controlled growth environment for plants since factors such as
light, nutrient availability, and soil pH impact the production of the metabolites required
for green synthesis [4,143]. Although some plants are specific to some regions, availability
can also expand the uses of some plants.

6. Conclusions

Green methods that use plant-based extracts as reducing, capping, and stabilizing
agents are environmentally friendly, cost-effective, and feasible alternatives for synthesizing
inorganic nanoparticles. This approach contributes to the Sustainable Development Goals
and circular economy principles. In recent years, various studies have been conducted
regarding the green-mediated synthesis of inorganic nanoparticles such as gold, silver,
titanium dioxide, zinc, copper, platinum, zirconium, iron, selenium, magnesium, nickel,
sulfur, cobalt, palladium, and indium, using plant extracts from the fruits, leaves, roots,
stems, barks, seeds, and peel from different plant species. These green-synthesized nanopar-
ticles exhibit interesting properties, including antioxidant, antimicrobial, dye degradation,
cytotoxic, analgesic, sedative, wound-healing, and skin-protection properties, as well as
being plant-growth promoters and showing potential for sensor development for diverse
applications. On the other hand, synthesizing inorganic nanoparticles using plant-based
extracts has many challenges that should be solved (low yield and extraction procedures)
for their practical production and application. Therefore, further studies are needed to
standardize synthesis processes, mainly the extraction conditions that permit narrowing
the gap between research laboratories and industry scale-up.
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