Please use this identifier to cite or link to this item: http://repositorio.cualtos.udg.mx:8080/jspui/handle/123456789/101
Title: Differential proteomic analysis of the pancreas of diabetic db/db mice reveals the proteins involved in the development of complications of diabetes mellitus
Authors: Pérez Vázquez, Victoriano
Guzmán Flores, Juan Manuel
Mares Álvarez, Daniela
Hernández Ortiz, Magdalena
Macías Cervantes, Maciste H.
Ramírez Emiliano, Joel
Encarnación Guevara, Sergio
Keywords: db/db mice
diabetes mellitus
obesity
pancreas
proteomics
interactome
Issue Date: 2014
Publisher: International Journal of Molecular Sciences Int. J. Mol. Sci. 2014, 15, 9579-9593; doi:10.3390/ijms15069579
Citation: Pérez-Vázquez, V., Guzmán-Flores, J. M., Mares-Álvarez, D., Hernández-Ortiz, M., Macías-Cervantes, M. H., Ramírez-Emiliano, J., & Encarnación-Guevara, S. (2014). Differential proteomic analysis of the pancreas of diabetic db/db mice reveals the proteins involved in the development of complications of diabetes mellitus. International Journal of Molecular Sciences, 15(6), 9579–93. doi:10.3390/ijms15069579
Abstract: Type 2 diabetes mellitus is characterized by hyperglycemia and insulin-resistance. Diabetes results from pancreatic inability to secrete the insulin needed to overcome this resistance. We analyzed the protein profile from the pancreas of ten-week old diabetic db/db and wild type mice through proteomics. Pancreatic proteins were separated in two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and significant changes in db/db mice respect to wild type mice were observed in 27 proteins. Twenty five proteins were identified by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) and their interactions were analyzed using search tool for the retrieval of interacting genes/proteins (STRING) and database for annotation, visualization and integrated discovery (DAVID). Some of these proteins were Pancreatic α-amylase, Cytochrome b5, Lithostathine-1, Lithostathine-2, Chymotrypsinogen B, Peroxiredoxin-4, Aspartyl aminopeptidase, Endoplasmin, and others, which are involved in the metabolism of carbohydrates and proteins, as well as in oxidative stress, and inflammation. Remarkably, these are mostly endoplasmic reticulum proteins related to peptidase activity, i.e., they are involved in proteolysis, glucose catabolism and in the tumor necrosis factor-mediated signaling pathway. These results suggest mechanisms for insulin resistance, and the chronic inflammatory state observed in diabetes.
URI: http://148.202.112.41:8080/jspui/handle/123456789/101
ISSN: 1422-0067
Appears in Collections:3207 Artículos

Files in This Item:
File Description SizeFormat 
Differential proteomic analysis of the pancreas of diabetic db.pdfArtículo490.99 kBAdobe PDFView/Open
Enlace a_Differential proteomic analisys of the pancreas of diabetic.htmEnlace a publicación23.81 kBHTMLView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.