Please use this identifier to cite or link to this item: http://repositorio.cualtos.udg.mx:8080/jspui/handle/123456789/1120
Title: Effect of TiO2-ZnO-MgO Mixed Oxide on Microbial Growth and Toxicity against Artemia salina
Authors: Anaya Esparza, Luis Miguel
González Silva, Napoleón
Yahia, Elhadi M.
González Vargas, Oscar Arturo
Montalvo González, Efigenia
Pérez Larios, Alejandro
Keywords: mixed oxides
nanomaterials
antimicrobial activity
toxicity
artemia salina
Issue Date: Jul-2019
Publisher: MDPI
Citation: Anaya-Esparza, Luis M., Napoleón González-Silva, Elhadi M. Yahia, O. A. González-Vargas, Efigenia Montalvo-González, and Alejandro Pérez-Larios. 2019. "Effect of TiO2-ZnO-MgO Mixed Oxide on Microbial Growth and Toxicity against Artemia salina" Nanomaterials 9, no. 7: 992. https://doi.org/10.3390/nano9070992
Series/Report no.: Nanomaterials;2019, 9, 992
Abstract: Mixed oxide nanoparticles (MONs, TiO2–ZnO–MgO) obtained by the sol-gel method were characterized by transmission electron microscopy, (TEM, HRTEM, and SAED) and thermogravimetric analysis (TGA/DTGA–DTA). Furthermore, the effect of MONs on microbial growth (growth profiling curve, lethal and sublethal effect) of Escherichia coli, Salmonella paratyphi, Staphylococcus aureus and Listeria monocytogenes, as well as the toxicity against Artemia salina by the lethal concentration test (LC50) were evaluated. MONs exhibited a near-spherical in shape, polycrystalline structure and mean sizes from 17 to 23 nm. The thermal analysis revealed that the anatase phase of MONs is completed around 480–500 °C. The normal growth of all bacteria tested is affected by the MONs presence compared with the control group. MONs also exhibited a reduction on the plate count from 0.58 to 2.10 log CFU/mL with a sublethal cell injury from 17 to 98%. No significant toxicity within 24 h was observed on A. salina. A bacteriostatic effect of MONs on bacteria was evidenced, which was strongly influenced by the type of bacteria, as well as no toxic effects (LC50 >1000 mg/L; TiO2–ZnO (5%)–MgO (5%)) on A. salina were detected. This study demonstrates the potential of MONs for industrial applications.
Description: Artículo
URI: http://repositorio.cualtos.udg.mx:8080/jspui/handle/123456789/1120
ISSN: 2079-4991
Appears in Collections:2301 Artículos

Files in This Item:
File Description SizeFormat 
Effect of TiO2-ZnO-MgO Mixed Oxide on Microbial Growth.pdfDocumento2.86 MBAdobe PDFView/Open
Enlace a_Effect of TiO2-ZnO-MgO Mixed Oxide on Microbial Growth.htmEnlace a publicación42.21 kBHTMLView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.