Please use this identifier to cite or link to this item: http://repositorio.cualtos.udg.mx:8080/jspui/handle/123456789/1132
Title: Hydroxylated ornithine lipids increase stress tolerance in Rhizobium tropici CIAT899mmi_753
Authors: Vences Guzmán, Miguel Ángel
Ziqiang, Guan
Ormeño Orrillo, Ernesto
González Silva, Napoleón
López Lara, Isabel M.
Martínez Romero, Esperanza
Geiger, Otto
Sohlenkamp, Christian
Keywords: ornithine lipids
α-amino
Issue Date: Mar-2011
Publisher: Wiley Online Library
Citation: Vences-Guzmán M.A., Guan Z., Ormeño-Orrillo E., González-Silva N., . López-Lara I.M, Martínez-Romero E., Geiger O., Sohlenkamp C. (2011). Hydroxylated ornithine lipids increase stress tolerance in Rhizobium tropici CIAT899mmi_753. Molecular Microbiology (2011) 79(6), 1496–1514. doi:10.1111/j.1365-2958.2011.07535.x
Series/Report no.: Molecular Microbiology;(2011) 79(6), 1496–1514
Abstract: Ornithine lipids (OLs) are widespread among Gram-negative bacteria. Their basic structure consists of a 3-hydroxy fatty acyl group attached in amide linkage to the α-amino group of ornithine and a second fatty acyl group ester-linked to the 3-hydroxy position of the first fatty acid. OLs can be hydroxylated within the secondary fatty acyl moiety and this modification has been related to increased stress tolerance. Rhizobium tropici, a nodule-forming α-proteobacterium known for its stress tolerance, forms four different OLs. Studies of the function of these OLs have been hampered due to lack of knowledge about their biosynthesis. Here we describe that OL biosynthesis increases under acid stress and that OLs are enriched in the outer membrane. Using a functional expression screen, the OL hydroxylase OlsE was identified, which in combination with the OL hydroxylase OlsC is responsible for the synthesis of modified OLs in R. tropici. Unlike described OL hydroxylations, the OlsE-catalysed hydroxylation occurs within the ornithine moiety. Mutants deficient in OlsE or OlsC and double mutants deficient in OlsC/OlsE were characterized. R. tropici mutants deficient in OlsC-mediated OL hydroxylation are more susceptible to acid and temperature stress. All three mutants lacking OL hydroxylases are affected during symbiosis.
Description: Artículo
URI: doi:10.1111/j.1365-2958.2011.07535.x
http://repositorio.cualtos.udg.mx:8080/jspui/handle/123456789/1132
ISSN: 1365-2958
Appears in Collections:2414 Artículos

Files in This Item:
File Description SizeFormat 
Hydroxylated ornithine lipids increase stress.pdfDocumento792.37 kBAdobe PDFView/Open
Enlace a_Hydroxylated ornithine lipids increase stress.htmEnlace a publicación41.56 kBHTMLView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.