Please use this identifier to cite or link to this item: http://repositorio.cualtos.udg.mx:8080/jspui/handle/123456789/1566
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUrenda Cázares, Ernesto-
dc.contributor.authorBarba Franco, José de Jesús-
dc.contributor.authorGallegos, Armando-
dc.contributor.authorMacías Díaz, Jorge E.-
dc.date.accessioned2023-10-16T23:23:38Z-
dc.date.available2023-10-16T23:23:38Z-
dc.date.issued2023-10-
dc.identifier.citationUrenda-Cázares, E., de Jesús Barba-Franco, J., Gallegos, A. et al. Integral of motion and nonlinear dynamics of three Duffing oscillators with weak or strong bidirectional coupling. Nonlinear Dyn 111, 18953–18968 (2023). https://doi.org/10.1007/s11071-023-08893-xes, en
dc.identifier.issn1573-269X online-
dc.identifier.issn0924-090X print-
dc.identifier.otherhttps://doi.org/10.1007/s11071-023-08893-x-
dc.identifier.urihttp://repositorio.cualtos.udg.mx:8080/jspui/handle/123456789/1566-
dc.descriptionArtículoes, en
dc.description.abstractIn this work, we present a system composed of three identical Duffing oscillators coupled bidirectionally. Starting from a Lagrangian that describes the system, an integral of motion is obtained by means of Noether’s theorem. The dynamics of the model is studied using bifurcation diagrams, Lyapunov exponents, time-series analysis, phase spaces, Poincaré sections, spatiotemporal and integral of motion planes. The analysis focuses on the monostable and bistable cases of the Duffing oscillator potential, in which a confined movement is guaranteed. In particular, it is observed that the system shows a chaotic behavior for small values of the coupling parameter for the bistable case. This is one of the first articles in the literature in which non-trivial integrals of motion are obtained for a system of three Duffing oscillators coupled bidirectionally. It is worth pointing out that there are some reports in the literature on integrals of motion for unidirectionally coupled nonlinear Duffing oscillators, but the study carried out in this work for bidirectionally coupled systems with more than two nonlinear Duffing oscillators is certainly one of the first.es, en
dc.language.isoenes, en
dc.publisherSpringer Naturees, en
dc.relation.ispartofseriesNonlinear Dynamics;111, (20), 18953–18968 (2023)-
dc.subjectbidirectional couplinges, en
dc.subjectcoupled three Duffing oscillatorses, en
dc.subjectintegrals of motiones, en
dc.subjectchaotic networkses, en
dc.subjectnonlinear dynamicses, en
dc.titleIntegral of motion and nonlinear dynamics of three Duffing oscillators with weak or strong bidirectional couplinges, en
dc.typeArticlees, en
Appears in Collections:1203 Artículos



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.