Please use this identifier to cite or link to this item: http://repositorio.cualtos.udg.mx:8080/jspui/handle/123456789/986
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRomero Toledo, Rafael-
dc.contributor.authorBravo Sánchez, M.-
dc.contributor.authorRangel Porras, G.-
dc.contributor.authorFuentes Ramírez, Rosalba-
dc.contributor.authorPérez Larios, Alejandro-
dc.contributor.authorMedina Ramírez, A.-
dc.contributor.authorMartínez Rosales, M.-
dc.date.accessioned2020-02-04T19:16:00Z-
dc.date.available2020-02-04T19:16:00Z-
dc.date.issued2018-11-
dc.identifier.citationRomero Toledo R., Bravo Sánchez M., Rangel Porras G., Fuentes Ramírez R., Pérez Larios A., Medina Ramirez A. y Martínez Rosales M. (2018). Effect of Mg as Impurity on the Structure of Mesoporous γ-Al203: Efficiency as Catalytic Support in HDS of DBT. De Gruyter, en International Journal of Chemical Reactor Engineering, Volume 16, Issue 11, 20170141. DOI: https://doi.org/10.1515/ijcre-2017-0141.es, en
dc.identifier.issn1542-6580-
dc.identifier.otherDOI: https://doi.org/10.1515/ijcre-2017-0141.-
dc.identifier.urihttp://repositorio.cualtos.udg.mx:8080/jspui/handle/123456789/986-
dc.descriptionSólo resúmenes, en
dc.description.abstractAbstract This work shows the study of two alumina materials synthesized from aluminum sulfate with different purity by hydrolysis-precipitation route. The main difference between the aluminum salt precursors was the lower cost of one of them which was due to the higher percentage of magnesium species as impurity. Both materials showed different mesoporous structure nano-fibrillar. The physic-chemical properties of these materials were studied by several characterization techniques as XRD, XRF, BET, 27Al MAS NMR, Pyridine adsorption FT-IR, FE-SEM/EDX, TEM and XPS. Furthermore, these materials were used as supports in the formulations of NiMo-based catalysts which were obtained by impregnation by the incipient wetness method of Ni and Mo salts in 3.3 and 15 wt. % respectively. The two NiMo/γ-Al2O3 sulfide catalysts were evaluated as catalysts in the reaction of hydrodesulphurization (HDS) of dibenzothiophene (DBT), using a high-pressure batch reactor at 350 °C and 3.1 MPa and time reaction of 5 h−1. The NiMo/γ-Al2O3 catalyst prepared by aluminum sulfate of low purity and lower cost exhibited the highest HDS efficiencies, 95 %, respectively, which were mainly ascribed to the presence of Mg (0.9 wt. %) as impurity.es, en
dc.language.isoenes, en
dc.publisherDe Gruyteres, en
dc.relation.ispartofseriesInternational Journal of Chemical Reactor Engineering;Volume 16, Issue 11, 20170141-
dc.subjectγ-Al2O3es, en
dc.subjectcatalystses, en
dc.subjectnano-fibrillares, en
dc.subjecthydrodesulphurizationes, en
dc.subjectlow costes, en
dc.subjectdibenzothiophenees, en
dc.titleEffect of Mg as Impurity on the Structure of Mesoporous γ-Al203: Efficiency as Catalytic Support in HDS of DBTes, en
dc.typeArticlees, en
Appears in Collections:3303 Artículos

Files in This Item:
File Description SizeFormat 
Enlace a_Effect of Mg as Impurity on the Structure of Mesoporous.htmEnlace a publicación44.46 kBHTMLView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.